BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19749239)

  • 21. Contiguous metal-mediated base pairs comprising two Ag(I) ions.
    Megger DA; Guerra CF; Hoffmann J; Brutschy B; Bickelhaupt FM; Müller J
    Chemistry; 2011 May; 17(23):6533-44. PubMed ID: 21544878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A-tract DNA disfavours triplex formation.
    Sandström K; Wärmländer S; Gräslund A; Leijon M
    J Mol Biol; 2002 Jan; 315(4):737-48. PubMed ID: 11812143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton NMR studies of 5'-d-(TC)(3) (CT)(3) (AG)(3)-3'--a paperclip triplex: the structural relevance of turns.
    Pasternack LB; Lin SB; Chin TM; Lin WC; Huang DH; Kan LS
    Biophys J; 2002 Jun; 82(6):3170-80. PubMed ID: 12023241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triple helical structures involving inosine: there is a penalty for promiscuity.
    Mills M; Völker J; Klump HH
    Biochemistry; 1996 Oct; 35(41):13338-44. PubMed ID: 8873600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Paper-clip" type triple helix formation by 5'-d-(TC)3Ta(CT)3Cb(AG)3 (a and b = 0-4) as a function of loop size with and without the pseudoisocytosine base in the Hoogsteen strand.
    Chin TM; Lin SB; Lee SY; Chang ML; Cheng AY; Chang FC; Pasternack L; Huang DH; Kan LS
    Biochemistry; 2000 Oct; 39(40):12457-64. PubMed ID: 11015227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unfolding thermodynamics of DNA pyrimidine triplexes with different molecularities.
    Lee HT; Arciniegas S; Marky LA
    J Phys Chem B; 2008 Apr; 112(15):4833-40. PubMed ID: 18358029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of DNA triple helix containing N(4)-(6-aminopyridin-2-yl)-2'-deoxycytidine.
    Chin TM; Tseng MH; Chung KY; Hung FS; Lin SB; Kan LS
    J Biomol Struct Dyn; 2001 Dec; 19(3):543-53. PubMed ID: 11790152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring Hoogsteen and reversed-Hoogsteen duplex and triplex formation with tricyclo-DNA purine sequences.
    Renneberg D; Leumann CJ
    Chembiochem; 2004 Aug; 5(8):1114-8. PubMed ID: 15300836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bimolecular DNA triplexes: duplex extensions show implications for H-form DNA stability.
    Mundt AA; Crouch GJ; Eaton BE
    Biochemistry; 1997 Oct; 36(42):13004-9. PubMed ID: 9335561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of GC and AT specific DNA minor groove binding drugs on intermolecular triplex formation in the human c-Ki-ras promoter.
    Vigneswaran N; Mayfield CA; Rodu B; James R; Kim HG; Miller DM
    Biochemistry; 1996 Jan; 35(4):1106-14. PubMed ID: 8573565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The stability of triplex DNA is affected by the stability of the underlying duplex.
    Rusling DA; Rachwal PA; Brown T; Fox KR
    Biophys Chem; 2009 Dec; 145(2-3):105-10. PubMed ID: 19819611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilization by extra-helical thymines of a DNA duplex with Hoogsteen base pairs.
    Pous J; Urpí L; Subirana JA; Gouyette C; Navaza J; Campos JL
    J Am Chem Soc; 2008 May; 130(21):6755-60. PubMed ID: 18447354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal stability of triple helical DNAs containing 2'-deoxyinosine and 2'-deoxyxanthosine.
    Ueno Y; Shibata A; Matsuda A; Kitade Y
    Bioorg Med Chem; 2004 Dec; 12(24):6581-6. PubMed ID: 15556774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrimidine-pyrimidine base pairs stabilized by silver(I) ions.
    Urata H; Yamaguchi E; Nakamura Y; Wada S
    Chem Commun (Camb); 2011 Jan; 47(3):941-3. PubMed ID: 21076774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silver(I)-mediated cytosine self-pairing is preferred over hoogsteen-type base pairs with the artificial nucleobase 1,3-dideaza-6-nitropurine.
    Megger DA; Muller J
    Nucleosides Nucleotides Nucleic Acids; 2010 Jan; 29(1):27-38. PubMed ID: 20391190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidation of the sequence-specific third-strand recognition of four Watson-Crick base pairs in a pyrimidine triple-helix motif: T.AT, C.GC, T.CG, and G.TA.
    Yoon K; Hobbs CA; Koch J; Sardaro M; Kutny R; Weis AL
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3840-4. PubMed ID: 1570302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair.
    Torigoe H; Okamoto I; Dairaku T; Tanaka Y; Ono A; Kozasa T
    Biochimie; 2012 Nov; 94(11):2431-40. PubMed ID: 22766014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative specificities in binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif.
    Fossella JA; Kim YJ; Shih H; Richards EG; Fresco JR
    Nucleic Acids Res; 1993 Sep; 21(19):4511-5. PubMed ID: 8233785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.