These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 19749359)
1. Structural aspects for the function of ATP-binding ribonucleopeptide receptors. Nakano S; Fukuda M; Mashima T; Katahira M; Morii T Nucleic Acids Symp Ser (Oxf); 2009; (53):259-60. PubMed ID: 19749359 [TBL] [Abstract][Full Text] [Related]
2. Structural aspects for the recognition of ATP by ribonucleopeptide receptors. Nakano S; Mashima T; Matsugami A; Inoue M; Katahira M; Morii T J Am Chem Soc; 2011 Mar; 133(12):4567-79. PubMed ID: 21370890 [TBL] [Abstract][Full Text] [Related]
3. Controlling a substrate-binding geometry of ribonucleopeptide receptor. Fukuda M; Nakano S; Morii T Nucleic Acids Symp Ser (Oxf); 2007; (51):421-2. PubMed ID: 18029766 [TBL] [Abstract][Full Text] [Related]
4. Stepwise functionalization of ribonucleopeptide complexes to receptors and sensors. Fukuda M; Tanabe Y; Morii T Nucleic Acids Symp Ser (Oxf); 2005; (49):355-6. PubMed ID: 17150780 [TBL] [Abstract][Full Text] [Related]
5. Ribonucleopeptides: functional RNA-peptide complexes. Hagihara M; Hasegawa T; Sato S; Yoshikawa S; Ohkubo K; Morii T Biopolymers; 2004; 76(1):66-8. PubMed ID: 14997476 [TBL] [Abstract][Full Text] [Related]
6. Construction of a stable functional ribonucleopeptide complex by the covalent linking method. Fukuda M; Nakano S; Tainaka K; Fujieda N; Morii T Nucleic Acids Symp Ser (Oxf); 2008; (52):195-6. PubMed ID: 18776320 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of ribonucleopeptide aptamer against ATP. Mashima T; Matsugami A; Nakano S; Inoue M; Fukuda M; Morii T; Katahira M Nucleic Acids Symp Ser (Oxf); 2009; (53):267-8. PubMed ID: 19749363 [TBL] [Abstract][Full Text] [Related]
8. Stepwise molding of a highly selective ribonucleopeptide receptor. Sato S; Fukuda M; Hagihara M; Tanabe Y; Ohkubo K; Morii T J Am Chem Soc; 2005 Jan; 127(1):30-1. PubMed ID: 15631433 [TBL] [Abstract][Full Text] [Related]
9. Structure-based design of fluorescent biosensors from ribonucleopeptide complexes. Hayashi H; Inoue M; Morii T Nucleic Acids Symp Ser (Oxf); 2007; (51):95-6. PubMed ID: 18029603 [TBL] [Abstract][Full Text] [Related]
10. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes. Hagihara M; Fukuda M; Hasegawa T; Morii T J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390 [TBL] [Abstract][Full Text] [Related]
12. Stepwise functionalization of ribonucleopeptides: optimization of the response of fluorescent ribonucleopeptide sensors for ATP. Hasegawa T; Hagihara M; Fukuda M; Morii T Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1277-81. PubMed ID: 18066768 [TBL] [Abstract][Full Text] [Related]
13. Selective recognition of a tetra-amino-acid motif containing phosphorylated tyrosine residue by ribonucleopeptide. Nakano S; Hasegawa T; Fukuda M; Fujieda N; Tainaka K; Morii T Nucleic Acids Symp Ser (Oxf); 2008; (52):199-200. PubMed ID: 18776322 [TBL] [Abstract][Full Text] [Related]
14. Construction of dopamine sensors by using fluorescent ribonucleopeptide complexes. Liew FF; Hasegawa T; Fukuda M; Nakata E; Morii T Bioorg Med Chem; 2011 Aug; 19(15):4473-81. PubMed ID: 21742507 [TBL] [Abstract][Full Text] [Related]
15. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor. Liew FF; Hayashi H; Nakano S; Nakata E; Morii T Bioorg Med Chem; 2011 Oct; 19(19):5771-5. PubMed ID: 21906952 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors. Nakano S; Fukuda M; Tamura T; Sakaguchi R; Nakata E; Morii T J Am Chem Soc; 2013 Mar; 135(9):3465-73. PubMed ID: 23373863 [TBL] [Abstract][Full Text] [Related]
17. In vitro selection of ATP-binding receptors using a ribonucleopeptide complex. Morii T; Hagihara M; Sato S; Makino K J Am Chem Soc; 2002 May; 124(17):4617-22. PubMed ID: 11971709 [TBL] [Abstract][Full Text] [Related]
18. Enzyme-mononucleotide interactions: three different folds share common structural elements for ATP recognition. Denessiouk KA; Lehtonen JV; Johnson MS Protein Sci; 1998 Aug; 7(8):1768-71. PubMed ID: 10082373 [TBL] [Abstract][Full Text] [Related]
19. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. Mao L; Wang Y; Liu Y; Hu X J Mol Biol; 2004 Feb; 336(3):787-807. PubMed ID: 15095988 [TBL] [Abstract][Full Text] [Related]
20. Covalently linked fluorescent ribonucreopeptide sensors. Fukuda M; Fong-Fong L; Morii T Nucleic Acids Symp Ser (Oxf); 2009; (53):257-8. PubMed ID: 19749358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]