BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 19749460)

  • 1. High frequency of loss of allelic integrity at Wilms' tumor suppressor gene-1 locus in advanced breast tumors associated with aggressiveness of the tumor.
    Gupta S; Joshi K; Wig JD; Arora SK
    Indian J Cancer; 2009; 46(4):303-10. PubMed ID: 19749460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of heterozygosity of the Wilms' tumor suppressor gene (WT1) in in situ and invasive breast carcinoma.
    Fabre A; McCann AH; O'Shea D; Broderick D; Keating G; Tobin B; Gorey T; Dervan PA
    Hum Pathol; 1999 Jun; 30(6):661-5. PubMed ID: 10374774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis.
    Gupta S; Joshi K; Wig JD; Arora SK
    Acta Oncol; 2007; 46(6):792-7. PubMed ID: 17653902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional deregulation of VEGF, FGF2, TGF-beta1, 2, 3 and cognate receptors in breast tumorigenesis.
    Soufla G; Porichis F; Sourvinos G; Vassilaros S; Spandidos DA
    Cancer Lett; 2006 Apr; 235(1):100-13. PubMed ID: 15949894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic progression, histological grade, and allelic loss in ductal carcinoma in situ of the breast.
    Fujii H; Szumel R; Marsh C; Zhou W; Gabrielson E
    Cancer Res; 1996 Nov; 56(22):5260-5. PubMed ID: 8912866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The WT1 Wilms' tumor suppressor gene product interacts with estrogen receptor-alpha and regulates IGF-I receptor gene transcription in breast cancer cells.
    Reizner N; Maor S; Sarfstein R; Abramovitch S; Welshons WV; Curran EM; Lee AV; Werner H
    J Mol Endocrinol; 2005 Aug; 35(1):135-44. PubMed ID: 16087727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsatellite alterations on human chromosome 11 in in situ and invasive breast cancer: a microdissection microsatellite analysis and correlation with p53, ER (estrogen receptor), and PR (progesterone receptor) protein immunoreactivity.
    Shen KL; Yang LS; Hsieh HF; Chen CJ; Yu JC; Tsai NM; Harn HJ
    J Surg Oncol; 2000 Jun; 74(2):100-7. PubMed ID: 10914818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of heterozygosity in ductal carcinoma in situ of the breast.
    Stratton MR; Collins N; Lakhani SR; Sloane JP
    J Pathol; 1995 Feb; 175(2):195-201. PubMed ID: 7738715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four regions of allelic imbalance on 17q12-qter associated with high-grade breast tumors.
    Plummer SJ; Paris MJ; Myles J; Tubbs R; Crowe J; Casey G
    Genes Chromosomes Cancer; 1997 Dec; 20(4):354-62. PubMed ID: 9408751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of loss heterozygosity in primary and recurrent ductal carcinoma in situ of the breast.
    Lininger RA; Fujii H; Man YG; Gabrielson E; Tavassoli FA
    Mod Pathol; 1998 Dec; 11(12):1151-9. PubMed ID: 9872644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of heterozygosity is detected at chromosomes 1p35-36 (NB), 3p25 (VHL), 16p13 (TSC2/PKD1), and 17p13 (TP53) in microdissected apocrine carcinomas of the breast.
    Lininger RA; Zhuang Z; Man Y; Park WS; Emmert-Buck M; Tavassoli FA
    Mod Pathol; 1999 Dec; 12(12):1083-9. PubMed ID: 10619258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of loss of heterozygosity on chromosome 11q13 in atypical ductal hyperplasia and in situ carcinoma of the breast.
    Chuaqui RF; Zhuang Z; Emmert-Buck MR; Liotta LA; Merino MJ
    Am J Pathol; 1997 Jan; 150(1):297-303. PubMed ID: 9006344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of heterozygosity from the short arm of chromosome 8 is associated with invasive behavior in breast cancer.
    Yaremko ML; Kutza C; Lyzak J; Mick R; Recant WM; Westbrook CA
    Genes Chromosomes Cancer; 1996 Jul; 16(3):189-95. PubMed ID: 8814452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic pathways in the evolution of breast ductal carcinoma in situ.
    Farabegoli F; Champeme MH; Bieche I; Santini D; Ceccarelli C; Derenzini M; Lidereau R
    J Pathol; 2002 Mar; 196(3):280-6. PubMed ID: 11857490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-abdominal desmoplastic small round cell tumor: immunohistochemical evidence for up-regulation of autocrine and paracrine growth factors.
    Froberg K; Brown RE; Gaylord H; Manivel C
    Ann Clin Lab Sci; 1998; 28(6):386-93. PubMed ID: 9846206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allelic loss of chromosomal arm 8p in breast cancer progression.
    Anbazhagan R; Fujii H; Gabrielson E
    Am J Pathol; 1998 Mar; 152(3):815-9. PubMed ID: 9502423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor.
    Xu YQ; Grundy P; Polychronakos C
    Oncogene; 1997 Mar; 14(9):1041-6. PubMed ID: 9070652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion map of chromosome 16q in ductal carcinoma in situ of the breast: refining a putative tumor suppressor gene region.
    Chen T; Sahin A; Aldaz CM
    Cancer Res; 1996 Dec; 56(24):5605-9. PubMed ID: 8971163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of heterozygosity and allelic imbalance in apocrine metaplasia of the breast: microdissection microsatellite analysis.
    Selim AG; Ryan A; El-Ayat G; Wells CA
    J Pathol; 2002 Mar; 196(3):287-91. PubMed ID: 11857491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer.
    Cvetkovic D; Pisarcik D; Lee C; Hamilton TC; Abdollahi A
    Gynecol Oncol; 2004 Dec; 95(3):449-55. PubMed ID: 15581945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.