These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 19749465)
1. Analysis of binding energy activity of imatinib and Abl tyrosine kinase domain based on simple consideration for conformational change: An explanation for variation in imatinib effect in mutated type. Wiwanitkit V Indian J Cancer; 2009; 46(4):335-6. PubMed ID: 19749465 [TBL] [Abstract][Full Text] [Related]
2. Characterization of compound 584, an Abl kinase inhibitor with lasting effects. Puttini M; Redaelli S; Moretti L; Brussolo S; Gunby RH; Mologni L; Marchesi E; Cleris L; Donella-Deana A; Drueckes P; Sala E; Lucchini V; Kubbutat M; Formelli F; Zambon A; Scapozza L; Gambacorti-Passerini C Haematologica; 2008 May; 93(5):653-61. PubMed ID: 18367480 [TBL] [Abstract][Full Text] [Related]
3. C6-unsubstituted pyrazolo[3,4-d]pyrimidines are dual Src/Abl inhibitors effective against imatinib mesylate resistant chronic myeloid leukemia cell lines. Santucci MA; Corradi V; Mancini M; Manetti F; Radi M; Schenone S; Botta M ChemMedChem; 2009 Jan; 4(1):118-26. PubMed ID: 19039816 [TBL] [Abstract][Full Text] [Related]
4. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Seeliger MA; Nagar B; Frank F; Cao X; Henderson MN; Kuriyan J Structure; 2007 Mar; 15(3):299-311. PubMed ID: 17355866 [TBL] [Abstract][Full Text] [Related]
5. Tyrosine kinase inhibition: Ligand binding and conformational change in c-Kit and c-Abl. Healy EF; Johnson S; Hauser CR; King PJ FEBS Lett; 2009 Sep; 583(17):2899-906. PubMed ID: 19660459 [TBL] [Abstract][Full Text] [Related]
6. A Src-like inactive conformation in the abl tyrosine kinase domain. Levinson NM; Kuchment O; Shen K; Young MA; Koldobskiy M; Karplus M; Cole PA; Kuriyan J PLoS Biol; 2006 May; 4(5):e144. PubMed ID: 16640460 [TBL] [Abstract][Full Text] [Related]
7. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Seeliger MA; Ranjitkar P; Kasap C; Shan Y; Shaw DE; Shah NP; Kuriyan J; Maly DJ Cancer Res; 2009 Mar; 69(6):2384-92. PubMed ID: 19276351 [TBL] [Abstract][Full Text] [Related]
8. A molecular mechanics model for imatinib and imatinib:kinase binding. Aleksandrov A; Simonson T J Comput Chem; 2010 May; 31(7):1550-60. PubMed ID: 20020482 [TBL] [Abstract][Full Text] [Related]
9. Imatinib mesylate (STI571)-induced cell edge translocation of kinase-active and kinase-defective Abelson kinase: requirements of myristoylation and src homology 3 domain. Fujita A; Shishido T; Yuan Y; Inamoto E; Narumiya S; Watanabe N Mol Pharmacol; 2009 Jan; 75(1):75-84. PubMed ID: 18835981 [TBL] [Abstract][Full Text] [Related]
10. The interplay of structural information and functional studies in kinase drug design: insights from BCR-Abl. Eck MJ; Manley PW Curr Opin Cell Biol; 2009 Apr; 21(2):288-95. PubMed ID: 19217274 [TBL] [Abstract][Full Text] [Related]
11. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. Hari SB; Perera BG; Ranjitkar P; Seeliger MA; Maly DJ ACS Chem Biol; 2013 Dec; 8(12):2734-43. PubMed ID: 24106839 [TBL] [Abstract][Full Text] [Related]
12. Structural insights into the conformational selectivity of STI-571 and related kinase inhibitors. Mol CD; Fabbro D; Hosfield DJ Curr Opin Drug Discov Devel; 2004 Sep; 7(5):639-48. PubMed ID: 15503866 [TBL] [Abstract][Full Text] [Related]
13. Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rbeta, and histone deacetylases. Mahboobi S; Dove S; Sellmer A; Winkler M; Eichhorn E; Pongratz H; Ciossek T; Baer T; Maier T; Beckers T J Med Chem; 2009 Apr; 52(8):2265-79. PubMed ID: 19301902 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Nagar B; Bornmann WG; Pellicena P; Schindler T; Veach DR; Miller WT; Clarkson B; Kuriyan J Cancer Res; 2002 Aug; 62(15):4236-43. PubMed ID: 12154025 [TBL] [Abstract][Full Text] [Related]
15. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors. Leproult E; Barluenga S; Moras D; Wurtz JM; Winssinger N J Med Chem; 2011 Mar; 54(5):1347-55. PubMed ID: 21322567 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and docking study of 2-phenylaminopyrimidine Abl tyrosine kinase inhibitors. Lü S; Luo Q; Hao X; Li X; Ji L; Zheng W; Wang F Bioorg Med Chem Lett; 2011 Dec; 21(23):6964-8. PubMed ID: 22033461 [TBL] [Abstract][Full Text] [Related]
18. c-Abl tyrosine kinase and inhibition by the cancer drug imatinib (Gleevec/STI-571). Nagar B J Nutr; 2007 Jun; 137(6 Suppl 1):1518S-1523S; discussion 1548S. PubMed ID: 17513418 [TBL] [Abstract][Full Text] [Related]
19. In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures. Verkhivker GM Biopolymers; 2007 Mar; 85(4):333-48. PubMed ID: 17167796 [TBL] [Abstract][Full Text] [Related]
20. 3D QSAR models built on structure-based alignments of Abl tyrosine kinase inhibitors. Falchi F; Manetti F; Carraro F; Naldini A; Maga G; Crespan E; Schenone S; Bruno O; Brullo C; Botta M ChemMedChem; 2009 Jun; 4(6):976-87. PubMed ID: 19326384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]