These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19749931)

  • 1. Birefringence of solid-state laser media: broadband tuning discontinuities and application to laser line narrowing.
    Krasinski JS; Band YB; Chin T; Heller DF; Morris RC; Papanestor PA
    Opt Lett; 1989 Apr; 14(8):393-5. PubMed ID: 19749931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-surface optic axis birefringent filters for smooth tuning of broadband lasers.
    Demırbas U
    Appl Opt; 2017 Oct; 56(28):7815-7825. PubMed ID: 29047765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral narrowing and broadening of Cr:ZnS/Se laser oscillation due to mode competition and spatial hole burning in the gain element.
    Danilin R; Fedorov V; Martyshkin D; Gafarov O; Mirov S
    Opt Express; 2023 Apr; 31(8):12686-12692. PubMed ID: 37157424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K5Nd(MoO4)4: a self-tunable laser crystal.
    Fernandez J; Iparraguirre I; Aramburu I; Illarramendi A; Azkargorta J; Voda M; Balda R
    Opt Lett; 2003 Aug; 28(15):1341-3. PubMed ID: 12906083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicolor lasers using birefringent filters: experimental demonstration with Cr:Nd:GSGG and Cr:LiSAF.
    Demirbas U; Uecker R; Fujimoto JG; Leitenstorfer A
    Opt Express; 2017 Feb; 25(3):2594-2607. PubMed ID: 29519103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium.
    Eismann U; Bergschneider A; Sievers F; Kretzschmar N; Salomon C; Chevy F
    Opt Express; 2013 Apr; 21(7):9091-102. PubMed ID: 23571998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact and efficient Nd:YVO 4 laser that generates a tunable single-frequency green output.
    Friel GJ; Kemp AJ; Lake TK; Sinclair BD
    Appl Opt; 2000 Aug; 39(24):4333-7. PubMed ID: 18350018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser.
    Geng J; Wada S; Urata Y; Tashiro H
    Opt Lett; 1999 May; 24(10):676-8. PubMed ID: 18073820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength tuning and power enhancement of an intracavity Nd:GdVO
    Sheng Q; Lee A; Spence D; Pask H
    Opt Express; 2018 Nov; 26(24):32145-32155. PubMed ID: 30650680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss.
    Lu H; Guo Y; Peng K
    Opt Lett; 2015 Nov; 40(22):5196-9. PubMed ID: 26565833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal.
    Thirugnanasambandam MP; Senatsky Y; Ueda K
    Opt Express; 2011 Jan; 19(3):1905-14. PubMed ID: 21369005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of elliptically birefringent media parameters in optical vortex birefringence compensator.
    Woźniak WA; Banach M
    Appl Opt; 2008 Jun; 47(18):3390-6. PubMed ID: 18566638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widely tunable dual-wavelength operation of Tm:YLF, Tm:LuAG, and Tm:YAG lasers using off-surface optic axis birefringent filters.
    Beyatlı E; Demırbas U
    Appl Opt; 2018 Aug; 57(23):6679-6686. PubMed ID: 30129612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength shifts in tuning dye lasers.
    Singer L; Singer Z; Kimel S
    Appl Opt; 1976 Nov; 15(11):2678-83. PubMed ID: 20165473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of FM-to-AM conversion in a broadband Nd:glass regenerative amplifier with an intracavity birefringent filter.
    Guo J; Wang J; Pan X; Lu X; Xia G; Wang X; Zhang S; Fan W; Li X
    Appl Opt; 2019 Feb; 58(5):1261-1270. PubMed ID: 30873996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control.
    Tawy G; Damzen MJ
    Opt Express; 2019 Jun; 27(13):17507-17520. PubMed ID: 31252709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers.
    Clarkson WA; Felgate NS; Hanna DC
    Opt Lett; 1999 Jun; 24(12):820-2. PubMed ID: 18073865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact spatial polariscope for light polarization state analysis.
    Woźniak WA; Kurzynowski P
    Opt Express; 2008 Jul; 16(14):10471-9. PubMed ID: 18607460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technique for continuous tuning of optical fiber lasers.
    Kozlov VA; Shubochkin RL; Kotze A; Wetjen E; Carter AL; Kung H; Brown DA; Morse TF
    Appl Opt; 1998 Jul; 37(21):4897-901. PubMed ID: 18285954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully vectorial laser resonator modeling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence.
    Asoubar D; Wyrowski F
    Opt Express; 2015 Jul; 23(15):18802-22. PubMed ID: 26367545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.