These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19749963)

  • 1. Mode size and time duration fluctuations in a picosecond Nd:YAG laser.
    Cutolo A; Zeni L; Berardi V; Bruzzese R; Solimeno S; Spinelli N
    Opt Lett; 1989 May; 14(10):494-6. PubMed ID: 19749963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-passive mode-locked Nd:YAG laser with passive negative feedback.
    Corno AD; Gabetta G; Reali GC; Kubecek V; Marek J
    Opt Lett; 1990 Jul; 15(13):734-6. PubMed ID: 19768062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-wave mode-locked Nd:YAG-pumped subpicosecond dye lasers.
    Johnson AM; Simpson WM
    Opt Lett; 1983 Nov; 8(11):554-6. PubMed ID: 19718181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode-locking operation of a pulsed Nd:YAG laser with F(2) BF:LiF color-center crystal in a dual configuration.
    de Rossi W; Costa FE; Vieira ND; Wetter NU; Morato SP; Basiev TT; Konyushkin VA; Mirov SB
    Appl Opt; 1992 May; 31(15):2719-21. PubMed ID: 20725199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Output Energy Fluctuations of the Nd:YAG Amplifier Chain of a Photoinjector Drive Laser System.
    Le Flanchec V
    Appl Opt; 1998 Sep; 37(27):6432-41. PubMed ID: 18286147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diode-pumped passively mode-locked Nd:YAG laser at 1338 nm with a semiconductor saturable absorber mirror.
    Yang Y; Xu JL; He JL; Yang XQ; Zhang BY; Yang H; Liu SD; Zhang BT
    Appl Opt; 2011 Dec; 50(36):6713-6. PubMed ID: 22193204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond optical parametric oscillator pumped by temporally compressed pulses from a Q-switched, mode-locked, cw-pumped Nd:YAG laser.
    Piskarskas AS; Smilgevic˜ius VJ; Umbrasas AP; Juodisius JP; Gomes AS; Taylor JR
    Opt Lett; 1989 Jun; 14(11):557-9. PubMed ID: 19752895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature response in the pulpal chamber of primary human teeth exposed to Nd:YAG laser using a picosecond pulsed regime.
    Lizarelli RF; Moriyama LT; Bagnato VS
    Photomed Laser Surg; 2006 Oct; 24(5):610-5. PubMed ID: 17069492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive mode-locking of a Nd:YAG ceramic laser by optical interference modulation in a GaAs wafer.
    Xie G; Tang D; Kong J; Qian L
    Opt Express; 2007 Apr; 15(9):5360-5. PubMed ID: 19532789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of nanosecond and picosecond laser ablation in enamel: morphological aspects.
    Lizarelli RF; Kurachi C; Misoguti L; Bagnato VS
    J Clin Laser Med Surg; 2000 Jun; 18(3):151-7. PubMed ID: 11799980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-power passively mode-locked Nd:YVO(4) laser using SWCNT saturable absorber fabricated by dip coating method.
    Tang CY; Chai Y; Long H; Tao L; Zeng LH; Tsang YH; Zhang L; Lin X
    Opt Express; 2015 Feb; 23(4):4880-6. PubMed ID: 25836523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active-passive mode-locked Nd:YAG oscillator.
    Lewis MA; Knudtson JT
    Appl Opt; 1982 Aug; 21(16):2897-900. PubMed ID: 20396146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe
    Li Z; Li R; Pang C; Dong N; Wang J; Yu H; Chen F
    Opt Express; 2019 Mar; 27(6):8727-8737. PubMed ID: 31052685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 microJ by use of an active multipass geometry.
    Neuhaus J; Kleinbauer J; Killi A; Weiler S; Sutter D; Dekorsy T
    Opt Lett; 2008 Apr; 33(7):726-8. PubMed ID: 18382531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.
    Okhrimchuk AG; Obraztsov PA
    Sci Rep; 2015 Jun; 5():11172. PubMed ID: 26052678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy picosecond pulses: design of a dye-laser-amplifier system.
    Wokaun A; Liao PF; Freeman RR; Storz RH
    Opt Lett; 1982 Jan; 7(1):13-5. PubMed ID: 19710807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable picosecond pulses around 1.3 microm generated by a synchronously pumped infrared dye laser.
    Seilmeier A; Kaiser W; Sens B; Drexhage KH
    Opt Lett; 1983 Apr; 8(4):205-7. PubMed ID: 19714185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond and femtosecond pulse generation near 1000 nm from a frequency-doubled Nd:YAG-pumped cw dye laser.
    Dawson MD; Boggess TF; Smirl AL
    Opt Lett; 1987 Aug; 12(8):590-2. PubMed ID: 19741808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturable Bragg reflector self-starting passive mode locking of a Cr(4+):YAG laser pumped with a diode-pumped Nd:YVO(4) laser.
    Collings BC; Stark JB; Tsuda S; Knox WH; Cunningham JE; Jan WY; Pathak R; Bergman K
    Opt Lett; 1996 Aug; 21(15):1171-3. PubMed ID: 19876289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror.
    Gerhard C; Druon F; Georges P; Couderc V; Leproux P
    Opt Express; 2006 Aug; 14(16):7093-8. PubMed ID: 19529080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.