These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19749976)

  • 1. Picosecond pump-probe interferometric measurement of optical nonlinearities in channel waveguides.
    Finlayson N; Banyai WC; Seaton CT; Stegeman GI; O'Neill M; Cullen TJ; Ironside CN
    Opt Lett; 1989 May; 14(10):532-4. PubMed ID: 19749976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond pump-probe interferometric measurement of optical nonlinearity in semiconductor-doped fibers.
    Cotter D; Ironside CN; Ainslie BJ; Girdlestone HP
    Opt Lett; 1989 Mar; 14(6):317-9. PubMed ID: 19749906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of optical nonlinearities in nanoporous silicon waveguides via pump-probe heterodyning technique.
    Suess RJ; Jadidi MM; Kim K; Murphy TE
    Opt Express; 2014 Jul; 22(14):17466-77. PubMed ID: 25090560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase and frequency resolution of picosecond optical Kerr nonlinearities.
    Pfeffer N; Charra F; Nunzi JM
    Opt Lett; 1991 Dec; 16(24):1987-9. PubMed ID: 19784204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical nonlinearities of glasses doped with semiconductor microcrystallites.
    Olbright GR; Peyghambarian N; Koch SW; Banyai L
    Opt Lett; 1987 Jun; 12(6):413-5. PubMed ID: 19741749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of two dimensional refractive index profiles of channel waveguides using an interferometric technique.
    Oven R
    Appl Opt; 2009 Oct; 48(30):5704-12. PubMed ID: 19844304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond measurements of absorptive and refractive optical nonlinearities in GaP at 532 nm.
    Rychnovsky S; Allan GR; Venzke CH; Boggess TF
    Opt Lett; 1994 Apr; 19(8):527-9. PubMed ID: 19844361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of complex third-order optical susceptibility in a collinear pump-probe experiment.
    Martin MO; Canioni L; Sarger L
    Opt Lett; 1998 Dec; 23(24):1874-6. PubMed ID: 18091940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source.
    Dave UD; Uvin S; Kuyken B; Selvaraja S; Leo F; Roelkens G
    Opt Express; 2013 Dec; 21(26):32032-9. PubMed ID: 24514798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse-width dependence of optical nonlinearities in As2Se3 chalcogenide glass in the picosecond-to-nanosecond region.
    Shinkawa K; Ogusu K
    Opt Express; 2008 Oct; 16(22):18230-40. PubMed ID: 18958100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses.
    Stegeman R; Stegeman G; Delfyett P; Petit L; Carlie N; Richardson K; Couzi M
    Opt Express; 2006 Nov; 14(24):11702-8. PubMed ID: 19529591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterodyne pump - probe technique for time-domain studies of optical nonlinearities in waveguides.
    Hall KL; Lenz G; Ippen EP; Raybon G
    Opt Lett; 1992 Jun; 17(12):874. PubMed ID: 19794659
    [No Abstract]   [Full Text] [Related]  

  • 13. Antiresonant ring interferometric nonlinear spectroscopy for nonlinear-optical measurements.
    Lee HW; Hughes RS
    Opt Lett; 1994 Nov; 19(21):1708-10. PubMed ID: 19855629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of coherent and incoherent nonlinearities in a heterodyne pump-probe experiment.
    Borri P; Romstad F; Langbein W; Kelly A; Mork J; Hvam J
    Opt Express; 2000 Jul; 7(3):107-12. PubMed ID: 19404375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of third-order optical nonlinear susceptibility using four-wave mixing in a single-mode ridge waveguide.
    Le HQ; Goodhue WD; Rauschenbach K
    Opt Lett; 1990 Oct; 15(20):1126-8. PubMed ID: 19771017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive index profile measurements of diffused optical waveguides.
    Martin WE
    Appl Opt; 1974 Sep; 13(9):2112-6. PubMed ID: 20134638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical nonlinearities in As2Se3 chalcogenide glasses doped with Cu and Ag for pulse durations on the order of nanoseconds.
    Ogusu K; Shinkawa K
    Opt Express; 2009 May; 17(10):8165-72. PubMed ID: 19434148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of silica-based waveguides with an interferometric optical time-domain reflectometry system using a 1.3-microm-wavelength superluminescent diode.
    Takada K; Takato N; Noda J; Noguchi Y
    Opt Lett; 1989 Jul; 14(13):706-8. PubMed ID: 19752943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All optical switching and continuum generation in silicon waveguides.
    Boyraz O; Koonath P; Raghunathan V; Jalali B
    Opt Express; 2004 Aug; 12(17):4094-102. PubMed ID: 19483951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison measurement of nonlinear ultrasonic waves in tubes by a microphone and by an optical interferometric probe.
    Slegrová Z; Bálek R
    Ultrasonics; 2005 Mar; 43(5):315-9. PubMed ID: 15737381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.