These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19750532)

  • 1. Biofunction-assisted sensors based on a new method for converting aptazyme activity into reporter protein expression with high efficiency in wheat germ extract.
    Ogawa A
    Chembiochem; 2009 Oct; 10(15):2465-8. PubMed ID: 19750532
    [No Abstract]   [Full Text] [Related]  

  • 2. Aptazyme-based biosensors using a eukaryotic cell-free translation system.
    Ogawa A
    Nucleic Acids Symp Ser (Oxf); 2009; (53):261-2. PubMed ID: 19749360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors.
    Ogawa A; Maeda M
    Bioorg Med Chem Lett; 2007 Jun; 17(11):3156-60. PubMed ID: 17391960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel label-free biosensor using an aptazyme-suppressor-tRNA conjugate and an amber mutated reporter gene.
    Ogawa A; Maeda M
    Chembiochem; 2008 Sep; 9(14):2204-8. PubMed ID: 18756550
    [No Abstract]   [Full Text] [Related]  

  • 5. Biofunction-assisted aptasensors based on ligand-dependent 3' processing of a suppressor tRNA in a wheat germ extract.
    Ogawa A; Tabuchi J
    Org Biomol Chem; 2015 Jun; 13(24):6681-5. PubMed ID: 25962756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro translation of messenger RNA in a wheat germ extract cell-free system.
    Olliver L; Grobler-Rabie A; Boyd CD
    Methods Mol Biol; 1998; 86():229-33. PubMed ID: 9664474
    [No Abstract]   [Full Text] [Related]  

  • 7. An aptazyme-based molecular device that converts a small-molecule input into an RNA output.
    Ayukawa S; Sakai Y; Kiga D
    Chem Commun (Camb); 2012 Aug; 48(61):7556-8. PubMed ID: 22543508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro translation of messenger RNA in a wheat germ extract cell-free system.
    Olliver L; Grobler-Rabie A; Boyd CD
    Methods Mol Biol; 1996; 58():485-9. PubMed ID: 8713898
    [No Abstract]   [Full Text] [Related]  

  • 9. Cell biology. RNA computing in a living cell.
    Shapiro E; Gil B
    Science; 2008 Oct; 322(5900):387-8. PubMed ID: 18927381
    [No Abstract]   [Full Text] [Related]  

  • 10. Artificial riboswitches: synthetic mRNA-based regulators of gene expression.
    Wieland M; Hartig JS
    Chembiochem; 2008 Aug; 9(12):1873-8. PubMed ID: 18604832
    [No Abstract]   [Full Text] [Related]  

  • 11. [In vitro protein synthesis system: cell-free protein synthesis system prepared from wheat germ].
    Sawasaki T; Endo Y
    Tanpakushitsu Kakusan Koso; 2004 Aug; 49(11 Suppl):1514-9. PubMed ID: 15376967
    [No Abstract]   [Full Text] [Related]  

  • 12.
    Ogawa A; Itoh Y
    ACS Synth Biol; 2020 Oct; 9(10):2648-2655. PubMed ID: 33017145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel way to express proline-selectively labeled proteins with a wheat germ cell-free protein synthesis system.
    Shimizu M; Ikegami T; Akiyama K; Morita EH
    J Biochem; 2006 Sep; 140(3):453-6. PubMed ID: 16916843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An artificial aptazyme-based riboswitch and its cascading system in E. coli.
    Ogawa A; Maeda M
    Chembiochem; 2008 Jan; 9(2):206-9. PubMed ID: 18098257
    [No Abstract]   [Full Text] [Related]  

  • 16. Translation using a wheat-germ extract.
    Van Herwynen JF; Beckler GS
    Methods Mol Biol; 1995; 37():245-51. PubMed ID: 7780507
    [No Abstract]   [Full Text] [Related]  

  • 17. Cell-free protein synthesis as a promising expression system for recombinant proteins.
    Ge X; Xu J
    Methods Mol Biol; 2012; 824():565-78. PubMed ID: 22160920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent energy transfer readout of an aptazyme-based biosensor.
    Rueda D; Walter NG
    Methods Mol Biol; 2006; 335():289-310. PubMed ID: 16785635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA aptazyme-tethered large gold nanoparticles for on-the-spot sensing of the aptazyme ligand.
    Ogawa A
    Bioorg Med Chem Lett; 2011 Jan; 21(1):155-9. PubMed ID: 21134750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a new-type riboswitch using an aptazyme and an anti-RBS sequence.
    Ogawa A; Maeda M
    Nucleic Acids Symp Ser (Oxf); 2007; (51):389-90. PubMed ID: 18029750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.