These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19750642)

  • 1. Hydrogen bonding modulates the selectivity of enzymatic oxidation by P450: chameleon oxidant behavior by compound I.
    de Visser SP; Ogliaro F; Sharma PK; Shaik S
    Angew Chem Int Ed Engl; 2002 Jun; 41(11):1947-51. PubMed ID: 19750642
    [No Abstract]   [Full Text] [Related]  

  • 2. A predictive pattern of computed barriers for C-h hydroxylation by compound I of cytochrome p450.
    de Visser SP; Kumar D; Cohen S; Shacham R; Shaik S
    J Am Chem Soc; 2004 Jul; 126(27):8362-3. PubMed ID: 15237977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico design of a mutant of cytochrome P450 containing selenocysteine.
    Cohen S; Kumar D; Shaik S
    J Am Chem Soc; 2006 Mar; 128(8):2649-53. PubMed ID: 16492051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does substrate oxidation determine the regioselectivity of cyclohexene and propene oxidation by cytochrome p450?
    Cohen S; Kozuch S; Hazan C; Shaik S
    J Am Chem Soc; 2006 Aug; 128(34):11028-9. PubMed ID: 16925412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of activation energies for aromatic oxidation by cytochrome P450.
    Rydberg P; Ryde U; Olsen L
    J Phys Chem A; 2008 Dec; 112(50):13058-65. PubMed ID: 18986131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.
    Bathelt CM; Ridder L; Mulholland AJ; Harvey JN
    J Am Chem Soc; 2003 Dec; 125(49):15004-5. PubMed ID: 14653732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Which oxidant is really responsible for sulfur oxidation by cytochrome P450?
    Li C; Zhang L; Zhang C; Hirao H; Wu W; Shaik S
    Angew Chem Int Ed Engl; 2007; 46(43):8168-70. PubMed ID: 17886330
    [No Abstract]   [Full Text] [Related]  

  • 8. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes.
    Shaik S; Kumar D; de Visser SP; Altun A; Thiel W
    Chem Rev; 2005 Jun; 105(6):2279-328. PubMed ID: 15941215
    [No Abstract]   [Full Text] [Related]  

  • 9. Can a single oxidant with two spin states masquerade as two different oxidants? A study of the sulfoxidation mechanism by cytochrome p450.
    Sharma PK; De Visser SP; Shaik S
    J Am Chem Soc; 2003 Jul; 125(29):8698-9. PubMed ID: 12862444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic isotope effect is a sensitive probe of spin state reactivity in C-H hydroxylation of N,N-dimethylaniline by cytochrome P450.
    Li C; Wu W; Kumar D; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):394-5. PubMed ID: 16402810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkane hydroxylation by peroxy acids: a comparison with the cytochrome P450 hydroxylation.
    Groenhof AR; Ehlers AW; Lammertsma K
    J Phys Chem A; 2008 Dec; 112(50):12855-61. PubMed ID: 18956858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential hydroxylation over epoxidation catalysis by a horseradish peroxidase mutant: a cytochrome P450 mimic.
    de Visser SP
    J Phys Chem B; 2007 Oct; 111(42):12299-302. PubMed ID: 17914801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-catalyzed asymmetric olefin cis-dihydroxylation with 97% enantiomeric excess.
    Suzuki K; Oldenburg PD; Que L
    Angew Chem Int Ed Engl; 2008; 47(10):1887-9. PubMed ID: 18236485
    [No Abstract]   [Full Text] [Related]  

  • 14. Reactive intermediates in cytochrome p450 catalysis.
    Krest CM; Onderko EL; Yosca TH; Calixto JC; Karp RF; Livada J; Rittle J; Green MT
    J Biol Chem; 2013 Jun; 288(24):17074-81. PubMed ID: 23632017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative dehalogenation of perhalogenated benzenes by cytochrome P450 compound I.
    Hackett JC; Sanan TT; Hadad CM
    Biochemistry; 2007 May; 46(20):5924-40. PubMed ID: 17455915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselective oxyfunctionalization of unactivated carbons in steroids by a model of cytochrome P-450: osmiumporphyrin complex/tert-butyl hydroperoxide system.
    Iida T; Ogawa S; Hosoi K; Makino M; Fujimoto Y; Goto T; Mano N; Goto J; Hofmann AF
    J Org Chem; 2007 Feb; 72(3):823-30. PubMed ID: 17253801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules.
    Wang Y; Chen H; Makino M; Shiro Y; Nagano S; Asamizu S; Onaka H; Shaik S
    J Am Chem Soc; 2009 May; 131(19):6748-62. PubMed ID: 19385626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental documentation of the structural consequences of hydrogen-bonding interactions to the proximal cysteine of a cytochrome P450.
    Mak PJ; Yang Y; Im S; Waskell LA; Kincaid JR
    Angew Chem Int Ed Engl; 2012 Oct; 51(41):10403-7. PubMed ID: 22968976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective recognition and electrochemical sensing of dicarboxylates with a ferrocene-based bis(o-trifluoroacetylcarboxanilide) receptor.
    Kim DS; Miyaji H; Chang BY; Park SM; Ahn KH
    Chem Commun (Camb); 2006 Aug; (31):3314-6. PubMed ID: 16883421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic properties of cytochrome P450 catalyzing 3'-hydroxylation of naringenin from the white-rot fungus Phanerochaete chrysosporium.
    Kasai N; Ikushiro S; Hirosue S; Arisawa A; Ichinose H; Wariishi H; Ohta M; Sakaki T
    Biochem Biophys Res Commun; 2009 Sep; 387(1):103-8. PubMed ID: 19576179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.