These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19750711)

  • 21. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes.
    Lee S; Chen CH; Flood AH
    Nat Chem; 2013 Aug; 5(8):704-10. PubMed ID: 23881503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio treatment of time-resolved x-ray scattering: application to the photoisomerization of stilbene.
    Debnarova A; Techert S; Schmatz S
    J Chem Phys; 2006 Dec; 125(22):224101. PubMed ID: 17176128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A molecular reel: shuttling of a rotor by tumbling of a macrocycle.
    Yamauchi K; Miyawaki A; Takashima Y; Yamaguchi H; Harada A
    J Org Chem; 2010 Feb; 75(4):1040-6. PubMed ID: 20073513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rotaxane mimic of the photoactive yellow protein chromophore environment: effects of hydrogen bonding and mechanical interlocking on a coumaric amide derivative.
    Berná J; Brouwer AM; Fazio SM; Haraszkiewicz N; Leigh DA; Lennon CM
    Chem Commun (Camb); 2007 May; (19):1910-2. PubMed ID: 17695226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Programmed Synthesis of Molecular Wires with Fixed Insulation and Defined Length Based on Oligo(phenylene ethynylene) and Permethylated α-Cyclodextrins.
    Masai H; Fujihara T; Tsuji Y; Terao J
    Chemistry; 2017 Oct; 23(60):15073-15079. PubMed ID: 28577322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective photoinduced energy transfer from a thiophene rotaxane to acceptor.
    Sakamoto K; Takashima Y; Hamada N; Ichida H; Yamaguchi H; Yamamoto H; Harada A
    Org Lett; 2011 Feb; 13(4):672-5. PubMed ID: 21210700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intramolecular hydrogen bond energy and cooperative interactions in α-, β-, and γ-cyclodextrin conformers.
    Deshmukh MM; Bartolotti LJ; Gadre SR
    J Comput Chem; 2011 Nov; 32(14):2996-3004. PubMed ID: 21793006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Powering a supramolecular machine with a photoactive molecular triad.
    Saha S; Johansson LE; Flood AH; Tseng HR; Zink JI; Stoddart JF
    Small; 2005 Jan; 1(1):87-90. PubMed ID: 17193355
    [No Abstract]   [Full Text] [Related]  

  • 29. Increasing the persistency of stable free-radicals: synthesis and characterization of a nitroxide based [1]rotaxane.
    Franchi P; Fanì M; Mezzina E; Lucarini M
    Org Lett; 2008 May; 10(10):1901-4. PubMed ID: 18412356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular electrostatic potentials and hydrogen bonding in alpha-, beta-, and gamma-cyclodextrins.
    Pinjari RV; Joshi KA; Gejji SP
    J Phys Chem A; 2006 Dec; 110(48):13073-80. PubMed ID: 17134168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge transfer chromophore-stopped [2]rotaxane through [2 + 2] cycloaddition.
    Zhou W; Xu J; Zheng H; Liu H; Li Y; Zhu D
    J Org Chem; 2008 Oct; 73(19):7702-9. PubMed ID: 18781803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rotaxanes Capped with Host Molecules: Supramolecular Behavior of Adamantylated Bisimidazolium Salts Containing a Biphenyl Centerpiece.
    Branná P; Rouchal M; Prucková Z; Dastychová L; Lenobel R; Pospíšil T; Maláč K; Vícha R
    Chemistry; 2015 Aug; 21(33):11712-8. PubMed ID: 26140503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of α-cyclodextrin on poly(pseudo)rotaxane nanoparticles self-assembled by protoporphyrin modified poly(ethylene glycol) for anticancer drug delivery.
    Xu T; Li J; Cao J; Gao W; Li L; He B
    Carbohydr Polym; 2017 Oct; 174():789-797. PubMed ID: 28821132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational Control of [2]Rotaxane by Hydrogen Bond.
    Kawasaki Y; Rashid S; Ikeyatsu K; Mutoh Y; Yoshigoe Y; Kikkawa S; Azumaya I; Hosoya S; Saito S
    J Org Chem; 2022 May; 87(9):5744-5759. PubMed ID: 35389647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential use of polypseudorotaxanes of pegylated polyamidoamine dendrimer with cyclodextrins as novel sustained release systems for DNA.
    Motoyama K; Hayashida K; Arima H
    Chem Pharm Bull (Tokyo); 2011; 59(4):476-9. PubMed ID: 21467677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical studies on hydrogen bonding, NMR chemical shifts and electron density topography in alpha, beta and gamma-cyclodextrin conformers.
    Pinjari RV; Joshi KA; Gejji SP
    J Phys Chem A; 2007 Dec; 111(51):13583-9. PubMed ID: 18052135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclodextrin Rotaxane with Switchable Pirouetting.
    Zhang QW; Zajíček J; Smith BD
    Org Lett; 2018 Apr; 20(7):2096-2099. PubMed ID: 29542930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydration properties of α-, β-, and γ-cyclodextrins from molecular dynamics simulations.
    Jana M; Bandyopadhyay S
    J Phys Chem B; 2011 May; 115(19):6347-57. PubMed ID: 21510684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins.
    Oshikiri T; Takashima Y; Yamaguchi H; Harada A
    Chemistry; 2007; 13(25):7091-8. PubMed ID: 17563911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular binding behavior of a bispyridinium-containing bis(β-cyclodextrin) and its corresponding [2]rotaxane towards bile salts.
    Zhang YM; Wang Z; Chen Y; Chen HZ; Ding F; Liu Y
    Org Biomol Chem; 2014 Apr; 12(16):2559-67. PubMed ID: 24622995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.