These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19750932)

  • 1. A walker with a device of partial suspension for patients with gait disturbance: body weight supported walker.
    Ochi M; Makino K; Wada F; Saeki S; Hachisuka K
    J UOEH; 2009 Sep; 31(3):259-63. PubMed ID: 19750932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of gait training with body weight support (BWS) with no body weight support (no-BWS) in stroke patients.
    Ullah MA; Shafi H; Khan GA; Malik AN; Amjad I
    J Pak Med Assoc; 2017 Jul; 67(7):1094-1096. PubMed ID: 28770894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel one arm motorized walker for hemiplegic stroke survivors: a feasibility study.
    Cho KH; Pyo S; Shin GS; Hong SD; Lee SH; Lee D; Song S; Lee G
    Biomed Eng Online; 2018 Jan; 17(1):14. PubMed ID: 29378582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of human gait with body weight support: benchmarking models and unloading strategies.
    Apte S; Plooij M; Vallery H
    J Neuroeng Rehabil; 2020 Jun; 17(1):81. PubMed ID: 32586398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambulation in a wheelchair-bound stroke survivor using a walker with body weight support: a case report.
    Zorowitz RD
    Top Stroke Rehabil; 2005; 12(4):50-5. PubMed ID: 16354643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation.
    Mun KR; Lim SB; Guo Z; Yu H
    Med Biol Eng Comput; 2017 Feb; 55(2):315-326. PubMed ID: 27193227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rehabilitation tool for functional balance using altered gravity and virtual reality.
    Oddsson LI; Karlsson R; Konrad J; Ince S; Williams SR; Zemkova E
    J Neuroeng Rehabil; 2007 Jul; 4():25. PubMed ID: 17623080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walker-assisted gait in rehabilitation: a study of biomechanics and instrumentation.
    Bachschmidt RA; Harris GF; Simoneau GG
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):96-105. PubMed ID: 11482369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait initiation and partial body weight unloading for functional improvement in post-stroke individuals.
    Gama GL; Celestino ML; Barela JA; Barela AMF
    Gait Posture; 2019 Feb; 68():305-310. PubMed ID: 30553152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of walking ability of household walkers versus community walkers based on K-BBS, gait velocity and upright motor control.
    Joa KL; Kwon SY; Choi JW; Hong SE; Kim CH; Jung HY
    Eur J Phys Rehabil Med; 2015 Oct; 51(5):619-25. PubMed ID: 25311883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the use of a body weight-supported walker on gait parameters in hemiplegic stroke patients.
    Koshisaki H; Nagai S
    J Phys Ther Sci; 2021 May; 33(5):434-438. PubMed ID: 34083884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practice of gait training using lower-limb orthosis and body weight-supported walker for severe acute motor axonal neuropathy: a case report.
    Kikkawa T; Takashima A
    Jpn J Compr Rehabil Sci; 2023; 14():49-53. PubMed ID: 37859787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study.
    Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D
    Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speed-dependent body weight supported sit-to-stand training in chronic stroke: a case series.
    Boyne P; Israel S; Dunning K
    J Neurol Phys Ther; 2011 Dec; 35(4):178-84. PubMed ID: 22052132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical indications and protocol considerations for selecting initial body weight support levels in gait rehabilitation: a systematic review.
    Ettema S; Pennink GH; Buurke TJW; David S; van Bennekom CAM; Houdijk H
    J Neuroeng Rehabil; 2024 Jun; 21(1):97. PubMed ID: 38849899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects.
    Barbeau H; Visintin M
    Arch Phys Med Rehabil; 2003 Oct; 84(10):1458-65. PubMed ID: 14586912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke.
    Kosak MC; Reding MJ
    Neurorehabil Neural Repair; 2000; 14(1):13-9. PubMed ID: 11228945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait training of poststroke patients assisted by the Walkaround (body postural support).
    Dragin AS; Konstantinović LM; Veg A; Schwirtlich LB
    Int J Rehabil Res; 2014 Mar; 37(1):22-8. PubMed ID: 23820295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postural and Metabolic Benefits of Using a Forearm Support Walker in Older Adults With Impairments.
    Jayaraman C; Mummidisetty CK; Loesch A; Kaur S; Hoppe-Ludwig S; Staat M; Jayaraman A
    Arch Phys Med Rehabil; 2019 Apr; 100(4):638-647. PubMed ID: 30367875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.