These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 19751213)
1. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA. Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213 [TBL] [Abstract][Full Text] [Related]
2. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674 [TBL] [Abstract][Full Text] [Related]
3. Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA. Singleton C; Banci L; Ciofi-Baffoni S; Tenori L; Kihlken MA; Boetzel R; Le Brun NE Biochem J; 2008 May; 411(3):571-9. PubMed ID: 18215122 [TBL] [Abstract][Full Text] [Related]
4. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis. Kihlken MA; Leech AP; Le Brun NE Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948 [TBL] [Abstract][Full Text] [Related]
5. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606 [TBL] [Abstract][Full Text] [Related]
6. Cu(I)- and proton-binding properties of the first N-terminal soluble domain of Bacillus subtilis CopA. Zhou L; Singleton C; Hecht O; Moore GR; Le Brun NE FEBS J; 2012 Jan; 279(2):285-98. PubMed ID: 22077885 [TBL] [Abstract][Full Text] [Related]
7. High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ. Zhou L; Singleton C; Le Brun NE Biochem J; 2008 Aug; 413(3):459-65. PubMed ID: 18419582 [TBL] [Abstract][Full Text] [Related]
8. Kinetic analysis of copper transfer from a chaperone to its target protein mediated by complex formation. Kay KL; Zhou L; Tenori L; Bradley JM; Singleton C; Kihlken MA; Ciofi-Baffoni S; Le Brun NE Chem Commun (Camb); 2017 Jan; 53(8):1397-1400. PubMed ID: 28078344 [TBL] [Abstract][Full Text] [Related]
9. CopAb, the second N-terminal soluble domain of Bacillus subtilis CopA, dominates the Cu(I)-binding properties of CopAab. Zhou L; Singleton C; Le Brun NE Dalton Trans; 2012 May; 41(19):5939-48. PubMed ID: 22531974 [TBL] [Abstract][Full Text] [Related]
10. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527 [TBL] [Abstract][Full Text] [Related]
11. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924 [TBL] [Abstract][Full Text] [Related]
12. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580 [TBL] [Abstract][Full Text] [Related]
13. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance. Solovieva IM; Entian KD FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800 [TBL] [Abstract][Full Text] [Related]
14. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper. Banci L; Bertini I; Del Conte R Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987 [TBL] [Abstract][Full Text] [Related]
15. A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase. Stasser JP; Siluvai GS; Barry AN; Blackburn NJ Biochemistry; 2007 Oct; 46(42):11845-56. PubMed ID: 17902702 [TBL] [Abstract][Full Text] [Related]
16. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones. Hussain F; Wittung-Stafshede P Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304 [TBL] [Abstract][Full Text] [Related]
17. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Multhaup G; Strausak D; Bissig KD; Solioz M Biochem Biophys Res Commun; 2001 Oct; 288(1):172-7. PubMed ID: 11594769 [TBL] [Abstract][Full Text] [Related]
18. Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge. Bersch B; Favier A; Schanda P; van Aelst S; Vallaeys T; Covès J; Mergeay M; Wattiez R J Mol Biol; 2008 Jul; 380(2):386-403. PubMed ID: 18533181 [TBL] [Abstract][Full Text] [Related]
19. Mass spectrometry of B. subtilis CopZ: Cu(i)-binding and interactions with bacillithiol. Kay KL; Hamilton CJ; Le Brun NE Metallomics; 2016 Jul; 8(7):709-19. PubMed ID: 27197762 [TBL] [Abstract][Full Text] [Related]
20. Mass spectrometric studies of Cu(I)-binding to the N-terminal domains of B. subtilis CopA and influence of bacillithiol. Kay KL; Hamilton CJ; Le Brun NE J Inorg Biochem; 2019 Jan; 190():24-30. PubMed ID: 30342352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]