These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 19751272)

  • 1. The CD4(+)CD8(+) and CD4(+) subsets of FOXP3(+) thymocytes differ in their response to growth factor deprivation or stimulation.
    Lehtoviita A; Rossi LH; Kekäläinen E; Sairanen H; Arstila TP
    Scand J Immunol; 2009 Oct; 70(4):377-83. PubMed ID: 19751272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of Bim results in abnormal accumulation of mature CD4-CD8-CD44-CD25- thymocytes.
    Hutcheson J; Perlman H
    Immunobiology; 2007; 212(8):629-36. PubMed ID: 17869640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The FOXP3+ subset of human CD4+CD8+ thymocytes is immature and subject to intrathymic selection.
    Tuovinen H; Pekkarinen PT; Rossi LH; Mattila I; Arstila TP
    Immunol Cell Biol; 2008; 86(6):523-9. PubMed ID: 18504453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Regulatory T Cells on Promoting Apoptosis of T Lymphocyte and Its Regulatory Mechanism in Sepsis.
    Luan YY; Yin CF; Qin QH; Dong N; Zhu XM; Sheng ZY; Zhang QH; Yao YM
    J Interferon Cytokine Res; 2015 Dec; 35(12):969-80. PubMed ID: 26309018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Bim by TCR signals in CD4/CD8 double-positive thymocytes.
    Bunin A; Khwaja FW; Kersh GJ
    J Immunol; 2005 Aug; 175(3):1532-9. PubMed ID: 16034091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. bcl-2 proto-oncogene expression during human T cell development. Evidence for biphasic regulation.
    Gratiot-Deans J; Ding L; Turka LA; Nuñez G
    J Immunol; 1993 Jul; 151(1):83-91. PubMed ID: 8326141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic and transcriptional analysis supports human regulatory T cell commitment at the CD4+CD8+ thymocyte stage.
    Vanhanen R; Leskinen K; Mattila IP; Saavalainen P; Arstila TP
    Cell Immunol; 2020 Jan; 347():104026. PubMed ID: 31843201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of human thymic regulatory T cells at the double positive stage.
    Nunes-Cabaço H; Caramalho I; Sepúlveda N; Sousa AE
    Eur J Immunol; 2011 Dec; 41(12):3604-14. PubMed ID: 21932449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent thymic origin, differentiation, and turnover of regulatory T cells.
    Mabarrack NH; Turner NL; Mayrhofer G
    J Leukoc Biol; 2008 Nov; 84(5):1287-97. PubMed ID: 18682578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucocorticoid hormone differentially modulates the in vitro expansion and cytokine profile of thymic and splenic Treg cells.
    Pap R; Ugor E; Litvai T; Prenek L; Najbauer J; Németh P; Berki T
    Immunobiology; 2019 Mar; 224(2):285-295. PubMed ID: 30612787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD4+ CD31+ recent thymic emigrants in CHD7 haploinsufficiency (CHARGE syndrome): a case.
    Assing K; Nielsen C; Kirchhoff M; Madsen HO; Ryder LP; Fisker N
    Hum Immunol; 2013 Sep; 74(9):1047-50. PubMed ID: 23747993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-step process for thymic regulatory T cell development.
    Lio CW; Hsieh CS
    Immunity; 2008 Jan; 28(1):100-11. PubMed ID: 18199417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TCR engagement of CD4+CD8+ thymocytes in vitro induces early aspects of positive selection, but not apoptosis.
    Groves T; Parsons M; Miyamoto NG; Guidos CJ
    J Immunol; 1997 Jan; 158(1):65-75. PubMed ID: 8977176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin-7 promotes human regulatory T cell development at the CD4+CD8+ double-positive thymocyte stage.
    Tuulasvaara A; Vanhanen R; Baldauf HM; Puntila J; Arstila TP
    J Leukoc Biol; 2016 Sep; 100(3):491-8. PubMed ID: 26965634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of mouse CD4(+)CD25(+)Foxp3(+) regulatory T cells in xenogeneic pig thymic grafts.
    Zhang B; Zhang A; Qu Y; Liu J; Niu Z; Zhao Y
    Transpl Immunol; 2009 Jan; 20(3):180-5. PubMed ID: 18845256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells.
    Aarts-Riemens T; Emmelot ME; Verdonck LF; Mutis T
    Eur J Immunol; 2008 May; 38(5):1381-90. PubMed ID: 18412171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation.
    Hoffmann P; Boeld TJ; Eder R; Huehn J; Floess S; Wieczorek G; Olek S; Dietmaier W; Andreesen R; Edinger M
    Eur J Immunol; 2009 Apr; 39(4):1088-97. PubMed ID: 19283780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed functional maturation of natural regulatory T cells in the medulla of postnatal thymus: role of TSLP.
    Jiang Q; Su H; Knudsen G; Helms W; Su L
    BMC Immunol; 2006 Apr; 7():6. PubMed ID: 16579866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD4+ CD25+ Foxp3+ IFNγ+ CD178+ human induced Treg (iTreg) contribute to suppression of alloresponses by apoptosis of responder cells.
    Daniel V; Sadeghi M; Wang H; Opelz G
    Hum Immunol; 2013 Feb; 74(2):151-62. PubMed ID: 23017670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of thymic CD4+CD25+ regulatory T cells and their co-stimulatory requirements are determined after elimination of recirculating peripheral CD4+ cells.
    Zhan Y; Bourges D; Dromey JA; Harrison LC; Lew AM
    Int Immunol; 2007 Apr; 19(4):455-63. PubMed ID: 17314081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.