BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1975170)

  • 1. Prosomatostatin II processing is initiated in the trans-Golgi network of anglerfish pancreatic cells.
    Bourdais J; Devilliers G; Girard R; Morel A; Benedetti L; Cohen P
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1263-72. PubMed ID: 1975170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosomatostatin is processed in the Golgi apparatus of rat neural cells.
    Lepage-Lezin A; Joseph-Bravo P; Devilliers G; Benedetti L; Launay JM; Gomez S; Cohen P
    J Biol Chem; 1991 Jan; 266(3):1679-88. PubMed ID: 1671040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells.
    Xu H; Shields D
    J Cell Biol; 1993 Sep; 122(6):1169-84. PubMed ID: 8104189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a somatostatin-28 containing the (Tyr-7, Gly-10) derivative of somatostatin-14: a terminal active product of prosomatostatin II processing in anglerfish pancreatic islets.
    Morel A; Gluschankof P; Gomez S; Fafeur V; Cohen P
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7003-6. PubMed ID: 6150481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic events in the post-translational processing of somatostatin precursors from rat brain cortex and anglerfish pancreatic islets.
    Cohen P; Morel A; Gluschankof P; Gomez S; Nicolas P
    Adv Exp Med Biol; 1985; 188():109-21. PubMed ID: 2863926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prohormone processing in permeabilized cells: endoproteolytic cleavage of prosomatostatin in the trans-Golgi network.
    Xu H; Shields D
    Biochimie; 1994; 76(3-4):257-64. PubMed ID: 7819332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous assessment of prohormone transport and processing in four separate islet cell types: a combined autoradiographic and biochemical study.
    Noe BD; Amherdt M; Perrelet A; Orci L
    Pancreas; 1988; 3(6):700-13. PubMed ID: 2906125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The propeptide of anglerfish preprosomatostatin-I rescues prosomatostatin-II from intracellular degradation.
    Chen YG; Danoff A; Shields D
    J Biol Chem; 1995 Aug; 270(31):18598-605. PubMed ID: 7629190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an endoprotease from rat small intestinal mucosal secretory granules which generates somatostatin-28 from prosomatostatin by cleavage after a single arginine residue.
    Beinfeld MC; Bourdais J; Kuks P; Morel A; Cohen P
    J Biol Chem; 1989 Mar; 264(8):4460-5. PubMed ID: 2564394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prosomatostatin processing in anglerfish brain, gut and pancreas.
    Morel A; Kuks PF; Bourdais J; Cohen P
    Biochem Biophys Res Commun; 1988 Feb; 151(1):347-54. PubMed ID: 2894830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Post-translational proteolytic maturation of prosomatostatin. Cellular and molecular approach].
    Bourdais J; Cohen P
    Ann Endocrinol (Paris); 1991; 52(5):339-47. PubMed ID: 1687882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational processing of anglerfish islet somatostatin precursors.
    Noe BD; Spiess J
    Adv Exp Med Biol; 1985; 188():123-40. PubMed ID: 2863927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prosomatostatin processing in permeabilized cells. Endoproteolytic cleavage is mediated by a vacuolar ATPase that generates an acidic pH in the trans-Golgi network.
    Xu H; Shields D
    J Biol Chem; 1994 Sep; 269(36):22875-81. PubMed ID: 7915719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-terminal sequences of prosomatostatin direct intracellular targeting but not processing specificity.
    Sevarino KA; Stork P; Ventimiglia R; Mandel G; Goodman RH
    Cell; 1989 Apr; 57(1):11-9. PubMed ID: 2564811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of prohormone-processing activities in islet microsomes and secretory granules: evidence for distinct converting enzymes for separate islet prosomatostatins.
    Noe BD; Debo G; Spiess J
    J Cell Biol; 1984 Aug; 99(2):578-87. PubMed ID: 6146629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of somatostatin-14 and somatostatin-28 gastrointestinal-pancreatic cells of rats and humans.
    Francis BH; Baskin DG; Saunders DR; Ensinck JW
    Gastroenterology; 1990 Nov; 99(5):1283-91. PubMed ID: 1976560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin-28 [1-12]-like peptides.
    Benoit R; Bohlen P; Ling N; Esch F; Baird A; Ying SY; Wehrenberg WB; Guillemin R; Morrison JH; Bakhit C
    Adv Exp Med Biol; 1985; 188():89-107. PubMed ID: 2863951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotranslational and posttranslational proteolytic processing of preprosomatostatin-I in intact islet tissue.
    Noe BD; Andrews PC; Dixon JE; Spiess J
    J Cell Biol; 1986 Oct; 103(4):1205-11. PubMed ID: 2876999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of prosomatostatin-converting enzymes.
    Mackin RB; Noe BD; Spiess J
    Metabolism; 1990 Sep; 39(9 Suppl 2):30-2. PubMed ID: 1976216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new prosomatostatin-derived peptide reveals a pattern for prohormone cleavage at monobasic sites.
    Benoit R; Ling N; Esch F
    Science; 1987 Nov; 238(4830):1126-9. PubMed ID: 2891188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.