These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1975170)

  • 1. Prosomatostatin II processing is initiated in the trans-Golgi network of anglerfish pancreatic cells.
    Bourdais J; Devilliers G; Girard R; Morel A; Benedetti L; Cohen P
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1263-72. PubMed ID: 1975170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosomatostatin is processed in the Golgi apparatus of rat neural cells.
    Lepage-Lezin A; Joseph-Bravo P; Devilliers G; Benedetti L; Launay JM; Gomez S; Cohen P
    J Biol Chem; 1991 Jan; 266(3):1679-88. PubMed ID: 1671040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells.
    Xu H; Shields D
    J Cell Biol; 1993 Sep; 122(6):1169-84. PubMed ID: 8104189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a somatostatin-28 containing the (Tyr-7, Gly-10) derivative of somatostatin-14: a terminal active product of prosomatostatin II processing in anglerfish pancreatic islets.
    Morel A; Gluschankof P; Gomez S; Fafeur V; Cohen P
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7003-6. PubMed ID: 6150481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic events in the post-translational processing of somatostatin precursors from rat brain cortex and anglerfish pancreatic islets.
    Cohen P; Morel A; Gluschankof P; Gomez S; Nicolas P
    Adv Exp Med Biol; 1985; 188():109-21. PubMed ID: 2863926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prohormone processing in permeabilized cells: endoproteolytic cleavage of prosomatostatin in the trans-Golgi network.
    Xu H; Shields D
    Biochimie; 1994; 76(3-4):257-64. PubMed ID: 7819332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous assessment of prohormone transport and processing in four separate islet cell types: a combined autoradiographic and biochemical study.
    Noe BD; Amherdt M; Perrelet A; Orci L
    Pancreas; 1988; 3(6):700-13. PubMed ID: 2906125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The propeptide of anglerfish preprosomatostatin-I rescues prosomatostatin-II from intracellular degradation.
    Chen YG; Danoff A; Shields D
    J Biol Chem; 1995 Aug; 270(31):18598-605. PubMed ID: 7629190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an endoprotease from rat small intestinal mucosal secretory granules which generates somatostatin-28 from prosomatostatin by cleavage after a single arginine residue.
    Beinfeld MC; Bourdais J; Kuks P; Morel A; Cohen P
    J Biol Chem; 1989 Mar; 264(8):4460-5. PubMed ID: 2564394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prosomatostatin processing in anglerfish brain, gut and pancreas.
    Morel A; Kuks PF; Bourdais J; Cohen P
    Biochem Biophys Res Commun; 1988 Feb; 151(1):347-54. PubMed ID: 2894830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Post-translational proteolytic maturation of prosomatostatin. Cellular and molecular approach].
    Bourdais J; Cohen P
    Ann Endocrinol (Paris); 1991; 52(5):339-47. PubMed ID: 1687882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational processing of anglerfish islet somatostatin precursors.
    Noe BD; Spiess J
    Adv Exp Med Biol; 1985; 188():123-40. PubMed ID: 2863927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prosomatostatin processing in permeabilized cells. Endoproteolytic cleavage is mediated by a vacuolar ATPase that generates an acidic pH in the trans-Golgi network.
    Xu H; Shields D
    J Biol Chem; 1994 Sep; 269(36):22875-81. PubMed ID: 7915719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-terminal sequences of prosomatostatin direct intracellular targeting but not processing specificity.
    Sevarino KA; Stork P; Ventimiglia R; Mandel G; Goodman RH
    Cell; 1989 Apr; 57(1):11-9. PubMed ID: 2564811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of prohormone-processing activities in islet microsomes and secretory granules: evidence for distinct converting enzymes for separate islet prosomatostatins.
    Noe BD; Debo G; Spiess J
    J Cell Biol; 1984 Aug; 99(2):578-87. PubMed ID: 6146629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of somatostatin-14 and somatostatin-28 gastrointestinal-pancreatic cells of rats and humans.
    Francis BH; Baskin DG; Saunders DR; Ensinck JW
    Gastroenterology; 1990 Nov; 99(5):1283-91. PubMed ID: 1976560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin-28 [1-12]-like peptides.
    Benoit R; Bohlen P; Ling N; Esch F; Baird A; Ying SY; Wehrenberg WB; Guillemin R; Morrison JH; Bakhit C
    Adv Exp Med Biol; 1985; 188():89-107. PubMed ID: 2863951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotranslational and posttranslational proteolytic processing of preprosomatostatin-I in intact islet tissue.
    Noe BD; Andrews PC; Dixon JE; Spiess J
    J Cell Biol; 1986 Oct; 103(4):1205-11. PubMed ID: 2876999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of prosomatostatin-converting enzymes.
    Mackin RB; Noe BD; Spiess J
    Metabolism; 1990 Sep; 39(9 Suppl 2):30-2. PubMed ID: 1976216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new prosomatostatin-derived peptide reveals a pattern for prohormone cleavage at monobasic sites.
    Benoit R; Ling N; Esch F
    Science; 1987 Nov; 238(4830):1126-9. PubMed ID: 2891188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.