BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19751748)

  • 1. Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle.
    Koval VV; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Mutat Res; 2010 Mar; 685(1-2):3-10. PubMed ID: 19751748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase.
    Koval VV; Kuznetsov NA; Zharkov DO; Ishchenko AA; Douglas KT; Nevinsky GA; Fedorova OS
    Nucleic Acids Res; 2004; 32(3):926-35. PubMed ID: 14769949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface.
    Buchko GW; McAteer K; Wallace SS; Kennedy MA
    DNA Repair (Amst); 2005 Mar; 4(3):327-39. PubMed ID: 15661656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-steady-state kinetic study of substrate specificity of Escherichia coli formamidopyrimidine--DNA glycosylase.
    Kuznetsov NA; Koval VV; Zharkov DO; Vorobjev YN; Nevinsky GA; Douglas KT; Fedorova OS
    Biochemistry; 2007 Jan; 46(2):424-35. PubMed ID: 17209553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of DNA repair glycosylases by base analogs and tryptophan pyrolysate, Trp-P-1.
    Speina E; Cieśla JM; Graziewicz MA; Laval J; Kazimierczuk Z; Tudek B
    Acta Biochim Pol; 2005; 52(1):167-78. PubMed ID: 15827615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two sequential phosphates 3' adjacent to the 8-oxoguanosine are crucial for lesion excision by E. coli Fpg protein and human 8-oxoguanine-DNA glycosylase.
    Rogacheva MV; Saparbaev MK; Afanasov IM; Kuznetsova SA
    Biochimie; 2005 Dec; 87(12):1079-88. PubMed ID: 15979229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial base excision repair enzyme Fpg recognizes bulky N7-substituted-FapydG lesion via unproductive binding mode.
    Coste F; Ober M; Le Bihan YV; Izquierdo MA; Hervouet N; Mueller H; Carell T; Castaing B
    Chem Biol; 2008 Jul; 15(7):706-17. PubMed ID: 18635007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable isotope-labeling of DNA repair proteins, and their purification and characterization.
    Reddy PT; Jaruga P; Nelson BC; Lowenthal M; Dizdaroglu M
    Protein Expr Purif; 2011 Jul; 78(1):94-101. PubMed ID: 21356311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site.
    Perlow-Poehnelt RA; Zharkov DO; Grollman AP; Broyde S
    Biochemistry; 2004 Dec; 43(51):16092-105. PubMed ID: 15610004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MutY DNA glycosylase: base release and intermediate complex formation.
    Zharkov DO; Grollman AP
    Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV; Volkov EM; Saparbarv MK; Kuznetsov SA
    Mol Biol (Mosk); 2004; 38(5):858-68. PubMed ID: 15554188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible chemical step and rate-limiting enzyme regeneration in the reaction catalyzed by formamidopyrimidine-DNA glycosylase.
    Kuznetsov NA; Zharkov DO; Koval VV; Buckle M; Fedorova OS
    Biochemistry; 2009 Dec; 48(48):11335-43. PubMed ID: 19835417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of imidazole ring-opened purines in DNA: overproduction of the formamidopyrimidine-DNA glycosylase of Escherichia coli using plasmids containing the fpg+ gene.
    O'Connor TR; Boiteux S; Laval J
    Ann Ist Super Sanita; 1989; 25(1):27-31. PubMed ID: 2665603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli MutY and Fpg utilize a processive mechanism for target location.
    Francis AW; David SS
    Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of action of base release by Escherichia coli Fpg protein: role of lysine 155 in catalysis.
    Rabow LE; Kow YW
    Biochemistry; 1997 Apr; 36(16):5084-96. PubMed ID: 9125531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interactions of pro- and eukaryotic DNA repair enzymes with oligodeoxyribonucleotides containing clustered lesions].
    Starostin KV; Ishchenko AA; Zharkov DO; Buneva VN; Nevinskiî GA
    Mol Biol (Mosk); 2007; 41(1):112-20. PubMed ID: 17380898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine.
    Duclos S; Aller P; Jaruga P; Dizdaroglu M; Wallace SS; Doublié S
    DNA Repair (Amst); 2012 Sep; 11(9):714-25. PubMed ID: 22789755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Sites of DNA Backbone Integrity for Damaged Base Removal by Formamidopyrimidine-DNA Glycosylase.
    Endutkin AV; Zharkov DO
    Biochemistry; 2019 Jun; 58(24):2740-2749. PubMed ID: 31120733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of Deinococcus radiodurans Fpg protein.
    Sentürker S; Bauche C; Laval J; Dizdaroglu M
    Biochemistry; 1999 Jul; 38(29):9435-9. PubMed ID: 10413519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.