BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 19752109)

  • 1. GABA(A) receptors, gephyrin and homeostatic synaptic plasticity.
    Tyagarajan SK; Fritschy JM
    J Physiol; 2010 Jan; 588(Pt 1):101-6. PubMed ID: 19752109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin.
    Tyagarajan SK; Ghosh H; Yévenes GE; Nikonenko I; Ebeling C; Schwerdel C; Sidler C; Zeilhofer HU; Gerrits B; Muller D; Fritschy JM
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):379-84. PubMed ID: 21173228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-dependent synaptic plasticity of NMDA receptors.
    Rebola N; Srikumar BN; Mulle C
    J Physiol; 2010 Jan; 588(Pt 1):93-9. PubMed ID: 19822542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular signaling mechanisms that shape postsynaptic GABAergic synapses.
    Jung H; Kim S; Ko J; Um JW
    Curr Opin Neurobiol; 2023 Aug; 81():102728. PubMed ID: 37236068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling mechanisms of homeostatic synaptic plasticity.
    Pozo K; Goda Y
    Neuron; 2010 May; 66(3):337-51. PubMed ID: 20471348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased network excitability and impaired induction of long-term potentiation in the dentate gyrus of collybistin-deficient mice in vivo.
    Jedlicka P; Papadopoulos T; Deller T; Betz H; Schwarzacher SW
    Mol Cell Neurosci; 2009 May; 41(1):94-100. PubMed ID: 19236916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABA(A) receptors.
    Rannals MD; Kapur J
    J Neurosci; 2011 Nov; 31(48):17701-12. PubMed ID: 22131430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic plasticity of GABAergic synapses.
    Barberis A
    Neuropharmacology; 2020 Jun; 169():107643. PubMed ID: 31108109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation.
    Pennacchietti F; Vascon S; Nieus T; Rosillo C; Das S; Tyagarajan SK; Diaspro A; Del Bue A; Petrini EM; Barberis A; Cella Zanacchi F
    J Neurosci; 2017 Feb; 37(7):1747-1756. PubMed ID: 28073939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostatic scaling of excitability in recurrent neural networks.
    Remme MW; Wadman WJ
    PLoS Comput Biol; 2012; 8(5):e1002494. PubMed ID: 22570604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses.
    Dejanovic B; Semtner M; Ebert S; Lamkemeyer T; Neuser F; Lüscher B; Meier JC; Schwarz G
    PLoS Biol; 2014 Jul; 12(7):e1001908. PubMed ID: 25025157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homeostatic regulation of gephyrin scaffolds and synaptic strength at mature hippocampal GABAergic postsynapses.
    Vlachos A; Reddy-Alla S; Papadopoulos T; Deller T; Betz H
    Cereb Cortex; 2013 Nov; 23(11):2700-11. PubMed ID: 22918984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of GABA
    Mele M; Leal G; Duarte CB
    J Neurochem; 2016 Dec; 139(6):997-1018. PubMed ID: 27424566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission.
    Ghosh H; Auguadri L; Battaglia S; Simone Thirouin Z; Zemoura K; Messner S; Acuña MA; Wildner H; Yévenes GE; Dieter A; Kawasaki H; O Hottiger M; Zeilhofer HU; Fritschy JM; Tyagarajan SK
    Nat Commun; 2016 Nov; 7():13365. PubMed ID: 27819299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organized criticality and scale-free properties in emergent functional neural networks.
    Shin CW; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):045101. PubMed ID: 17155118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic and glutamatergic terminals differentially influence the organization of GABAergic synapses in rat cerebellar granule cells in vitro.
    Studler B; Fritschy JM; Brünig I
    Neuroscience; 2002; 114(1):123-33. PubMed ID: 12207960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights on the role of gephyrin in regulating both phasic and tonic GABAergic inhibition in rat hippocampal neurons in culture.
    Marchionni I; Kasap Z; Mozrzymas JW; Sieghart W; Cherubini E; Zacchi P
    Neuroscience; 2009 Dec; 164(2):552-62. PubMed ID: 19660531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction.
    Antonelli R; Pizzarelli R; Pedroni A; Fritschy JM; Del Sal G; Cherubini E; Zacchi P
    Nat Commun; 2014 Oct; 5():5066. PubMed ID: 25297980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures.
    Buckby LE; Jensen TP; Smith PJ; Empson RM
    Mol Cell Neurosci; 2006 Apr; 31(4):805-16. PubMed ID: 16500111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic plasticity with discrete state synapses.
    Abarbanel HD; Talathi SS; Gibb L; Rabinovich MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031914. PubMed ID: 16241489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.