These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19752946)

  • 1. Polarization-sensitive surface plasmon Schottky detectors.
    Jestl M; Maran I; Köck A; Beinstingl W; Gornik E
    Opt Lett; 1989 Jul; 14(14):719-21. PubMed ID: 19752946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency- and polarization-selective Schottky detectors in the visible and near ultraviolet.
    Berthold K; Beinstingl W; Gornik E
    Opt Lett; 1987 Feb; 12(2):69-71. PubMed ID: 19738795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Dielectric Environment Sensitivity of Surface Plasmon-Polariton in the Surface-Barrier Heterostructures Based on Corrugated Thin Metal Films with Quasi-Anticorrelated Interfaces.
    Korovin AV; Dmitruk NL; Mamykin SV; Myn'ko VI; Sosnova MV
    Nanoscale Res Lett; 2017 Dec; 12(1):213. PubMed ID: 28340525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Enhanced Surface Photovoltage of ZnO/Ag Nanogratings.
    Gwon M; Sohn A; Cho Y; Phark SH; Ko J; Sang Kim Y; Kim DW
    Sci Rep; 2015 Nov; 5():16727. PubMed ID: 26567529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures.
    Wang Y; Shen L; Wang Y; Hou B; Gibson GN; Poudel N; Chen J; Shi H; Guignon E; Cady NC; Page WD; Pilar A; Dawlaty J; Cronin SB
    Faraday Discuss; 2019 May; 214(0):325-339. PubMed ID: 31049541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion relation for surface plasmon polaritons on a Schottky junction.
    Wijesinghe T; Premaratne M
    Opt Express; 2012 Mar; 20(7):7151-64. PubMed ID: 22453397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors.
    Alavirad M; Olivieri A; Roy L; Berini P
    Opt Express; 2016 Oct; 24(20):22544-22554. PubMed ID: 27828325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Assisted Direction- and Polarization-Sensitive Organic Thin-Film Detector.
    Haslinger MJ; Sivun D; Pöhl H; Munkhbat B; Mühlberger M; Klar TA; Scharber MC; Hrelescu C
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32957705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons.
    Muskens OL; Treffers J; Forcales M; Borgström MT; Bakkers EP; Rivas JG
    Opt Lett; 2007 Aug; 32(15):2097-9. PubMed ID: 17671548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Surface Photogalvanic and Photon Drag Effects in Ag/Pd Metal-Semiconductor Nanocomposite.
    Saushin AS; Mikheev GM; Vanyukov VV; Svirko YP
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device.
    Sobhani A; Knight MW; Wang Y; Zheng B; King NS; Brown LV; Fang Z; Nordlander P; Halas NJ
    Nat Commun; 2013; 4():1643. PubMed ID: 23535664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kramers-Kronig Relation for Attenuated Total Reflection from a Metal-Dielectric Interface Where Surface Plasmon Polaritons Are Excited.
    Ju H
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy.
    Fu M; Qian L; Long H; Wang K; Lu P; Rakovich YP; Hetsch F; Susha AS; Rogach AL
    Nanoscale; 2014 Aug; 6(15):9192-7. PubMed ID: 24981883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angle-Sensitive Detector Based on Silicon-On-Insulator Photodiode Stacked with Surface Plasmon Antenna.
    Nagarajan A; Hara S; Satoh H; Panchanathan AP; Inokawa H
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of surface plasmon polarization conversion on the grating pitch.
    Sabat RG; Rochon N; Rochon P
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):518-22. PubMed ID: 20208943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement and tunability of active plasmonic by multilayer grating coupled emission.
    Chiu NF; Yu C; Nien SY; Lee JH; Kuan CH; Wu KC; Lee CK; Lin CW
    Opt Express; 2007 Sep; 15(18):11608-15. PubMed ID: 19547520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of light polarization on plasmon-induced charge transfer.
    Ma J; Wang J; Gao S
    J Chem Phys; 2022 Jun; 156(24):244704. PubMed ID: 35778088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures.
    Cai BG; Li YB; Ma HF; Jiang WX; Cheng Q; Cui TJ
    Sci Rep; 2016 Apr; 6():23974. PubMed ID: 27035269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.