These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 19753025)
1. Picosecond photorefractive response of GaAs:EL2, InP:Fe, and CdTe:V. Valley GC; Dubard J; Smirl AL; Glass AM Opt Lett; 1989 Sep; 14(17):961-3. PubMed ID: 19753025 [TBL] [Abstract][Full Text] [Related]
2. Picosecond photorefractive beam coupling in GaAs. Valley GC; Smirl AL; Klein MB; Bohnert K; Boggess TF Opt Lett; 1986 Oct; 11(10):647-9. PubMed ID: 19738716 [TBL] [Abstract][Full Text] [Related]
3. Beam coupling in undoped GaAs at 1.06 microm using the photorefractive effect. Klein MB Opt Lett; 1984 Aug; 9(8):350-2. PubMed ID: 19721595 [TBL] [Abstract][Full Text] [Related]
4. Modelling of OPNMR phenomena using photon energy-dependent 〈S Wheeler DD; Willmering MM; Sesti EL; Pan X; Saha D; Stanton CJ; Hayes SE J Magn Reson; 2016 Dec; 273():19-26. PubMed ID: 27721104 [TBL] [Abstract][Full Text] [Related]
5. Picosecond separation and measurement of coexisting photorefractive, bound-electronic, and free-carrier grating dynamics in GaAs. Schroeder WA; Stark TS; Dawson MD; Boggess TF; Smirl AL; Valley GC Opt Lett; 1991 Feb; 16(3):159-61. PubMed ID: 19773868 [TBL] [Abstract][Full Text] [Related]
6. Picosecond photorefractive effect in BaTiO(3). Smirl AL; Valley GC; Mullen RA; Bohnert K; Mire CD; Boggess TF Opt Lett; 1987 Jul; 12(7):501-3. PubMed ID: 19741778 [TBL] [Abstract][Full Text] [Related]
7. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe. Picoli G; Gravey P; Ozkul C Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683 [TBL] [Abstract][Full Text] [Related]
8. Optical and photorefractive properties of InP:Ti: a new photorefractive semiconductor. Nolte DD; Olsen DH; Monberg EM; Bridenbaugh PM; Glass AM Opt Lett; 1989 Nov; 14(22):1278-80. PubMed ID: 19759658 [TBL] [Abstract][Full Text] [Related]
9. Transient picosecond response of the photorefractive effect in InP:Fe. Mao H; Li F; Deng X Opt Lett; 1990 Aug; 15(16):888-90. PubMed ID: 19770943 [TBL] [Abstract][Full Text] [Related]
11. High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals. Imbert B; Rajbenbach H; Mallick S; Herriau JP; Huignard JP Opt Lett; 1988 Apr; 13(4):327-9. PubMed ID: 19745888 [TBL] [Abstract][Full Text] [Related]
12. High photorefractive gain at counterpropagating geometry in CdTe:Ge at 1.064 microm and 1.55 microm. Shcherbin K Appl Opt; 2009 Jan; 48(2):371-4. PubMed ID: 19137049 [TBL] [Abstract][Full Text] [Related]
13. Spectral response characterization of an InP:Fe photorefractive wavelength-self-tunable single-sideband filter. Vourc'h E; Hervé D Opt Lett; 2003 Jul; 28(13):1105-7. PubMed ID: 12879922 [TBL] [Abstract][Full Text] [Related]
14. Wavelength dependence of two photon and free carrier absorptions in InP. Gonzalez LP; Murray JM; Krishnamurthy S; Guha S Opt Express; 2009 May; 17(11):8741-8. PubMed ID: 19466123 [TBL] [Abstract][Full Text] [Related]
16. Application of nano-EBIC to the characterization of GaAs and InP homojunctions. Smaali K; Troyon M Nanotechnology; 2008 Apr; 19(15):155706. PubMed ID: 21825630 [TBL] [Abstract][Full Text] [Related]
17. CdTe electrodeposition on InP(100) via electrochemical atomic layer epitaxy (EC-ALE): studies using UHV-EC. Muthuvel M; Stickney JL Langmuir; 2006 Jun; 22(12):5504-8. PubMed ID: 16732684 [TBL] [Abstract][Full Text] [Related]