These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19753025)

  • 21. Optical phase-lock loops with photoconductive semiconductor phase detectors.
    Davidson F; Wang CC; Trivedi S
    Opt Lett; 1994 Jun; 19(11):774-6. PubMed ID: 19844441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of photoelectric processes in photorefractive crystals via the exposure characteristics of light diffraction.
    Kadys A; Gudelis V; Sudzius M; Jarasiunas K
    J Phys Condens Matter; 2005 Jan; 17(1):33-41. PubMed ID: 21690666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical study on time response of semiconductor photorefractive effects under subpicosecond ultra-fast X-rays.
    Zhou H; Huang Q; He K; Gao G; Yan X; Yao D; Wang T; Tian J; Hu R; Lv M
    Philos Trans A Math Phys Eng Sci; 2023 Aug; 381(2253):20220213. PubMed ID: 37393941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Verification of EL2 electronic absorption effect on charge transfer in semi-insulating GaAs.
    Ge WK; Song CY; Jiang DS
    Phys Rev B Condens Matter; 1996 Apr; 53(15):9809-9813. PubMed ID: 9982541
    [No Abstract]   [Full Text] [Related]  

  • 25. High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields.
    Ozkul C; Picoli G; Gravey P; Wolffer N
    Appl Opt; 1990 Jun; 29(18):2711-7. PubMed ID: 20567319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited].
    Cirloganu CM; Padilha LA; Fishman DA; Webster S; Hagan DJ; Van Stryland EW
    Opt Express; 2011 Nov; 19(23):22951-60. PubMed ID: 22109174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation Z-scan technique for characterization of photorefractive crystals.
    Aguilar PA; Mondragon JJ; Stepanov S
    Opt Lett; 1996 Oct; 21(19):1541-3. PubMed ID: 19881718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photorefractive performance of a CdSe/ZnS core/shell nanoparticle-sensitized polymer.
    Aslam F; Binks DJ; Rahn MD; West DP; O'Brien P; Pickett N; Daniels S
    J Chem Phys; 2005 May; 122(18):184713. PubMed ID: 15918753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optically pumped ultrashort cavity In(1-x) Ga(x) As(y) P(1-y) lasers: picosecond operation between 0.83 and 1.59 microm.
    Stone J; Wiesenfeld JM; Dentai AG; Damen TC; Duguay MA; Chang TY; Caridi EA
    Opt Lett; 1981 Nov; 6(11):534-6. PubMed ID: 19710762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gallium arsenide deep-level optical emitter for fibre optics.
    Pan JL; McManis JE; Osadchy T; Grober L; Woodall JM; Kindlmann PJ
    Nat Mater; 2003 Jun; 2(6):375-8. PubMed ID: 12738958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-efficiency dual-absorption InGaAs/InP photodetector incorporating GaAs/AlGaAs Bragg reflectors.
    Duan X; Huang Y; Shang Y; Wang J; Ren X
    Opt Lett; 2014 Apr; 39(8):2447-50. PubMed ID: 24979015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Index grating lifetime in photorefractive GaAs.
    Cheng LJ; Partovi A
    Appl Opt; 1988 May; 27(9):1760-3. PubMed ID: 20531648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wide-field-of-view heterodyne receiver at 1.06 microm with photorefractive InP:Fe.
    Johnson B; Mandra R; Iseler GW; Clark HR
    Opt Lett; 1993 Nov; 18(21):1840-2. PubMed ID: 19829422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier-transform infrared-absorption studies of intracenter transitions in the EL2 level in semi-insulating bulk GaAs grown with the liquid-encapsulated Czochralski technique.
    Manasreh MO; Covington BC
    Phys Rev B Condens Matter; 1987 Feb; 35(5):2524-2527. PubMed ID: 9941719
    [No Abstract]   [Full Text] [Related]  

  • 35. Temperature enhancement of the photorefractive effect in GaAs due to the metastable state of the EL2 defect.
    Delaye P; Sugg B
    Phys Rev B Condens Matter; 1994 Dec; 50(23):16973-16984. PubMed ID: 9976093
    [No Abstract]   [Full Text] [Related]  

  • 36. Photorefractive semiconductor single-mode waveguides grown by gas-source molecular-beam epitaxy.
    Chauvet M; Hervé D; Mainguet B; Rébéjac B; Salaün S; Corre AL; Viallet JE
    Opt Lett; 1995 Aug; 20(15):1604-6. PubMed ID: 19862097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EL2 deep donor state in semi-insulating GaAs revealed by frequency dependent positron mobility measurements.
    Au HL; Ling CC; Panda BK; Lee TC; Beling CD; Fung S
    Phys Rev Lett; 1994 Nov; 73(20):2732-2735. PubMed ID: 10057178
    [No Abstract]   [Full Text] [Related]  

  • 38. Optical Writing and Electro-Optic Imaging of Reversible Space Charges in Semi-Insulating CdTe Diodes.
    Cola A; Dominici L; Valletta A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection.
    Singh A; Pal S; Surdi H; Prabhu SS; Mathimalar S; Nanal V; Pillay RG; Döhler GH
    Opt Express; 2015 Mar; 23(5):6656-61. PubMed ID: 25836882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.