These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19753052)

  • 1. Liquid excimers: lasing Xe(2) and Kr(2) in liquid argon.
    Loree TR; Showalter RR; Johnson TM; Birmingham BS; Hughes WM
    Opt Lett; 1989 Oct; 14(19):1051-3. PubMed ID: 19753052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The far from equilibrium structure of argon clusters doped with krypton or xenon.
    Lindblad A; Bergersen H; Rander T; Lundwall M; Ohrwall G; Tchaplyguine M; Svensson S; Björneholm O
    Phys Chem Chem Phys; 2006 Apr; 8(16):1899-905. PubMed ID: 16633676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method.
    Rosendahl S; Brown E; Cristescu I; Fieguth A; Huhmann C; Lebeda O; Murra M; Weinheimer C
    Rev Sci Instrum; 2015 Nov; 86(11):115104. PubMed ID: 26628169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically excited XeF* excimer laser in liquid argon.
    Shahidi M; Jara H; Pummer H; Egger H; Rhodes CK
    Opt Lett; 1985 Sep; 10(9):448-50. PubMed ID: 19724477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: a matrix isolation infrared spectroscopic and theoretical study.
    Zhao Y; Gong Y; Chen M; Ding C; Zhou M
    J Phys Chem A; 2005 Dec; 109(51):11765-70. PubMed ID: 16366626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic exploration of xenon/krypton separation based on a high-throughput screening.
    Ren E; Coudert FX
    Faraday Discuss; 2021 Oct; 231(0):201-223. PubMed ID: 34195736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.
    Wang Z; Bao L; Hao X; Ju Y
    Rev Sci Instrum; 2014 Jan; 85(1):015116. PubMed ID: 24517821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities.
    Lee SJ; Yoon TU; Kim AR; Kim SY; Cho KH; Hwang YK; Yeon JW; Bae YS
    J Hazard Mater; 2016 Dec; 320():513-520. PubMed ID: 27597151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents.
    Rogers NJ; Hill-Casey F; Stupic KF; Six JS; Lesbats C; Rigby SP; Fraissard J; Pavlovskaya GE; Meersmann T
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):3164-8. PubMed ID: 26961001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lasing XeO in liquid argon.
    Loree TR; Showalter RR; Johnson TM; Birmingham BS; Hughes WM
    Opt Lett; 1986 Aug; 11(8):510-2. PubMed ID: 19738672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes.
    Anderson R; Schweitzer B; Wu T; Carreon MA; Gómez-Gualdrón DA
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):582-592. PubMed ID: 29256241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble gas-actinide complexes of the CUO molecule with multiple Ar, Kr, and Xe atoms in noble-gas matrices.
    Andrews L; Liang B; Li J; Bursten BE
    J Am Chem Soc; 2003 Mar; 125(10):3126-39. PubMed ID: 12617681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of low-xenon and krypton supplementation on signal/noise of regional CT-based ventilation measurements.
    Chon D; Beck KC; Simon BA; Shikata H; Saba OI; Hoffman EA
    J Appl Physiol (1985); 2007 Apr; 102(4):1535-44. PubMed ID: 17122371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior of mixed Ar-Kr, Ar-Xe and Kr-Xe monolayer films on graphite: a Monte Carlo study.
    Patrykiejew A
    J Phys Condens Matter; 2013 Jan; 25(1):015001. PubMed ID: 23160409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational overtone spectroscopy of saturated hydrocarbons dissolved in liquefied Ar, Kr, Xe, and N2.
    Lopez-Calvo A; Manzanares CE
    J Phys Chem A; 2008 Feb; 112(8):1730-40. PubMed ID: 18247509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching Kr/Xe selectivity with temperature in a metal-organic framework.
    Fernandez CA; Liu J; Thallapally PK; Strachan DM
    J Am Chem Soc; 2012 Jun; 134(22):9046-9. PubMed ID: 22591325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings.
    Zinelis S
    J Prosthet Dent; 2000 Nov; 84(5):575-82. PubMed ID: 11105014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Krypton-81m ventilation and technetium-99m macroaggregated albumin perfusion scintigraphy for detection of pulmonary embolism: the first experience in Taiwan.
    Cherng SC; Yang SP; Wang YF; Jen TK; Huang WS; Lo AR
    Zhonghua Yi Xue Za Zhi (Taipei); 2000 Dec; 63(12):876-84. PubMed ID: 11195138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.
    Mann G; Hermans J
    J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants.
    Liu J; Thallapally PK; Strachan D
    Langmuir; 2012 Aug; 28(31):11584-9. PubMed ID: 22799439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.