These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19753065)

  • 1. Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings.
    Moslehi B; Harvey P; Ng J; Jannson T
    Opt Lett; 1989 Oct; 14(19):1088-90. PubMed ID: 19753065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-loss optical demultiplexer for WDM systems in the 0.8-microm wavelength region.
    Aoyama K; Minowa J
    Appl Opt; 1979 Aug; 18(16):2834-6. PubMed ID: 20212759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical demultiplexer for a wavelength division multiplexing system.
    Aoyama K; Minowa J
    Appl Opt; 1979 Apr; 18(8):1253-8. PubMed ID: 20208919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional grating based interleaved angled MMI for high-uniformity wavelength division (de)multiplexing and surface-normal fiber packaging.
    Zhang Z; Liu T; Zhang K; Li M; Liu H; Li H; Niu P; Gu E
    Appl Opt; 2021 Jul; 60(19):5615-5622. PubMed ID: 34263853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and design of planar slanted volume holographic gratings for wavelength-division-multiplexing applications.
    Liu J; Chen RT; Davies BM; Li L
    Appl Opt; 1999 Dec; 38(34):6981-6. PubMed ID: 18324241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-optic Fabry-Perot sensors based on a combination of spatial-frequency division multiplexing and wavelength division multiplexing formed by chirped fiber Bragg grating pairs.
    Rao YJ; Ran ZL; Zhou CX
    Appl Opt; 2006 Aug; 45(23):5815-8. PubMed ID: 16926866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-dimensional to two-dimensional channel formatting with micro-optics for wavelength division multiplexing networks.
    Ménard M; Thomas-Dupuis F; Kirk AG
    Appl Opt; 2006 Jan; 45(1):122-30. PubMed ID: 16422330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promising compact wavelength-tunable optical add-drop multiplexer in dense wavelength-division multiplexing systems.
    Zhu Y; Shum P; Lu C; Swart PL; Lacquet BM; Spammer SJ
    Opt Lett; 2004 Apr; 29(7):682-4. PubMed ID: 15072357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures.
    Kuo CW; Chang CF; Chen MH; Chen SY; Wu YD
    Opt Express; 2007 Jan; 15(1):198-206. PubMed ID: 19532235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of cascaded volume holographic gratings to increase the number of channels for an optical demultiplexer.
    Do DD; Kim N; Han TY; An JW; Lee KY
    Appl Opt; 2006 Dec; 45(34):8714-21. PubMed ID: 17119567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength demultiplexer in multimode fiber that uses optimized holographic optical elements.
    Ishii Y; Kubota T
    Appl Opt; 1993 Aug; 32(23):4415-22. PubMed ID: 20830100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-division multiplexing and demultiplexing on locally sensitized single-mode polymer microstructure waveguides.
    Wang MR; Chen RT; Sonek GJ; Jannson T
    Opt Lett; 1990 Apr; 15(7):363-5. PubMed ID: 19767944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature sensitivity of passive holographic wavelength-division multiplexers-demultiplexers.
    Deng X; An D; Zhao F; Chen RT; Villavicencio V
    Appl Opt; 2000 Aug; 39(23):4047-57. PubMed ID: 18349986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetically controllable wavelength-division-multiplexing fiber coupler.
    Lin W; Zhang H; Song B; Miao Y; Liu B; Yan D; Liu Y
    Opt Express; 2015 May; 23(9):11123-34. PubMed ID: 25969208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems.
    Kajita M; Kasahara K; Kim TJ; Neilson DT; Ogura I; Redmond I; Schenfeld E
    Appl Opt; 1998 Jun; 37(17):3746-55. PubMed ID: 18273346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing.
    Tan Y; Wu H; Wang S; Li C; Dai D
    Opt Lett; 2018 May; 43(9):1962-1965. PubMed ID: 29714772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Athermalized low-loss echelle-grating-based multimode dense wavelength division demultiplexer.
    Qiao J; Zhao F; Chen RT; Horwitz JW; Morey WW
    Appl Opt; 2002 Nov; 41(31):6567-75. PubMed ID: 12412647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path-reversed substrate- guided-wave optical interconnects for wavelength-division demultiplexing.
    Liu J; Chen RT
    Appl Opt; 1999 May; 38(14):3046-52. PubMed ID: 18319890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength division (de)multiplexing based on dispersive self-imaging.
    Hu Y; Jenkins RM; Gardes FY; Finlayson ED; Mashanovich GZ; Reed GT
    Opt Lett; 2011 Dec; 36(23):4488-90. PubMed ID: 22139218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-broadband Bragg concave diffraction grating designs on 220-nm SOI for wavelength demultiplexing.
    Li K; Zhu J; Duan Q; Sun Y; Hou X
    Opt Express; 2021 Sep; 29(19):30259-30271. PubMed ID: 34614752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.