BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 19753330)

  • 1. Endothelium as target for large-conductance calcium-activated potassium channel openers.
    Wrzosek A
    Acta Biochim Pol; 2009; 56(3):393-404. PubMed ID: 19753330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple regulatory sites in large-conductance calcium-activated potassium channels.
    Xia XM; Zeng X; Lingle CJ
    Nature; 2002 Aug; 418(6900):880-4. PubMed ID: 12192411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.
    Noble K; Floyd R; Shmygol A; Shmygol A; Mobasheri A; Wray S
    Cell Calcium; 2010 Jan; 47(1):47-54. PubMed ID: 19969350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-conductance, calcium-activated potassium channels: structural and functional implications.
    Ghatta S; Nimmagadda D; Xu X; O'Rourke ST
    Pharmacol Ther; 2006 Apr; 110(1):103-16. PubMed ID: 16356551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rat GnRH neurons exhibit large conductance voltage- and Ca2+-Activated K+ (BK) currents and express BK channel mRNAs.
    Hiraizumi Y; Nishimura I; Ishii H; Tanaka N; Takeshita T; Sakuma Y; Kato M
    J Physiol Sci; 2008 Feb; 58(1):21-9. PubMed ID: 18177544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.
    Dale TJ; Cryan JE; Chen MX; Trezise DJ
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):470-7. PubMed ID: 12382077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Ca2+ -activated K+ channels in human dermal fibroblasts and their roles in apoptosis.
    Yun J; Park H; Ko JH; Lee W; Kim K; Kim T; Shin J; Kim K; Kim K; Song JH; Noh YH; Bang H; Lim I
    Skin Pharmacol Physiol; 2010; 23(2):91-104. PubMed ID: 20016251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade.
    Soh H; Park CS
    Biophys J; 2001 May; 80(5):2207-15. PubMed ID: 11325723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo.
    Grgic I; Eichler I; Heinau P; Si H; Brakemeier S; Hoyer J; Köhler R
    Arterioscler Thromb Vasc Biol; 2005 Apr; 25(4):704-9. PubMed ID: 15662023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
    Langer P; Gründer S; Rüsch A
    J Comp Neurol; 2003 Jan; 455(2):198-209. PubMed ID: 12454985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of calcium-activated potassium channels.
    Weiger TM; Hermann A; Levitan IB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Mar; 188(2):79-87. PubMed ID: 11919690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function.
    Wrzosek A; Łukasiak A; Gwóźdź P; Malińska D; Kozlovski VI; Szewczyk A; Chlopicki S; Dołowy K
    Eur J Pharmacol; 2009 Jan; 602(1):105-11. PubMed ID: 19028489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of large-conductance calcium-activated potassium channels (BK(Ca)) in human NT2-N cells.
    Chapman H; Piggot C; Andrews PW; Wann KT
    Brain Res; 2007 Jan; 1129(1):15-25. PubMed ID: 17156763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial potassium channels.
    Szewczyk A; Jarmuszkiewicz W; Kunz WS
    IUBMB Life; 2009 Feb; 61(2):134-43. PubMed ID: 19165895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains.
    Piskorowski R; Aldrich RW
    Nature; 2002 Dec; 420(6915):499-502. PubMed ID: 12466841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-activated potassium channels - a therapeutic target for modulating nitric oxide in cardiovascular disease?
    Dalsgaard T; Kroigaard C; Simonsen U
    Expert Opin Ther Targets; 2010 Aug; 14(8):825-37. PubMed ID: 20560781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-activated potassium channels contribute to human skeletal muscle microvascular endothelial dysfunction related to cardiopulmonary bypass.
    Liu Y; Sellke EW; Feng J; Clements RT; Sodha NR; Khabbaz KR; Senthilnathan V; Alper SL; Sellke FW
    Surgery; 2008 Aug; 144(2):239-44. PubMed ID: 18656631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential therapeutic role of potassium channel modulators in asthma and chronic obstructive pulmonary disease.
    Malerba M; Radaeli A; Mancuso S; Polosa R
    J Biol Regul Homeost Agents; 2010; 24(2):123-30. PubMed ID: 20487625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of potassium channels in coronary vasodilation.
    Dick GM; Tune JD
    Exp Biol Med (Maywood); 2010 Jan; 235(1):10-22. PubMed ID: 20404014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BK channels in the kidney: role in K(+) secretion and localization of molecular components.
    Pluznick JL; Sansom SC
    Am J Physiol Renal Physiol; 2006 Sep; 291(3):F517-29. PubMed ID: 16774904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.