These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 19754042)

  • 1. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles.
    Wang LL; Johnson DD
    J Am Chem Soc; 2009 Oct; 131(39):14023-9. PubMed ID: 19754042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
    Froemming NS; Henkelman G
    J Chem Phys; 2009 Dec; 131(23):234103. PubMed ID: 20025310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.
    Choi WS; Koo HY; Kim DY
    Langmuir; 2008 May; 24(9):4633-6. PubMed ID: 18410163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction.
    Zhang Q; Xie J; Lee JY; Zhang J; Boothroyd C
    Small; 2008 Aug; 4(8):1067-71. PubMed ID: 18651712
    [No Abstract]   [Full Text] [Related]  

  • 9. Nonthermal plasma synthesized freestanding silicon-germanium alloy nanocrystals.
    Pi XD; Kortshagen U
    Nanotechnology; 2009 Jul; 20(29):295602. PubMed ID: 19567968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Trends in Core-Shell Preferences for Bimetallic Nanoparticles.
    Eom N; Messing ME; Johansson J; Deppert K
    ACS Nano; 2021 May; 15(5):8883-8895. PubMed ID: 33890464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles.
    Shore MS; Wang J; Johnston-Peck AC; Oldenburg AL; Tracy JB
    Small; 2011 Jan; 7(2):230-4. PubMed ID: 21213387
    [No Abstract]   [Full Text] [Related]  

  • 12. Doped assemblies of gold nanoparticles: structural and electronic properties.
    Martins Jda R; Batista RJ; Chacham H
    J Am Chem Soc; 2010 Sep; 132(34):11929-33. PubMed ID: 20698544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling enzymatic reactions involving transition metals.
    Siegbahn PE; Borowski T
    Acc Chem Res; 2006 Oct; 39(10):729-38. PubMed ID: 17042473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures and relative stability of neutral gold clusters: Aun (n=15-19).
    Bulusu S; Zeng XC
    J Chem Phys; 2006 Oct; 125(15):154303. PubMed ID: 17059251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of PbSeTe single ternary alloy and core/shell heterostructured nanocubes.
    Quan Z; Luo Z; Loc WS; Zhang J; Wang Y; Yang K; Porter N; Lin J; Wang H; Fang J
    J Am Chem Soc; 2011 Nov; 133(44):17590-3. PubMed ID: 21978384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of electronegativity differences and surface structure in molecular dissociation reactions at transition metal surfaces.
    Crawford P; Hu P
    J Phys Chem B; 2006 Dec; 110(49):24929-35. PubMed ID: 17149914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations.
    Martínez JI; García-Lastra JM; López MJ; Alonso JA
    J Chem Phys; 2010 Jan; 132(4):044314. PubMed ID: 20113040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys.
    Greeley J; Mavrikakis M
    J Phys Chem B; 2005 Mar; 109(8):3460-71. PubMed ID: 16851380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.