These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19754080)

  • 1. Dynamical transition in a small helical peptide and its implication for vibrational energy transport.
    Backus EH; Bloem R; Pfister R; Moretto A; Crisma M; Toniolo C; Hamm P
    J Phys Chem B; 2009 Oct; 113(40):13405-9. PubMed ID: 19754080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural flexibility of a helical peptide regulates vibrational energy transport properties.
    Backus EH; Nguyen PH; Botan V; Moretto A; Crisma M; Toniolo C; Zerbe O; Stock G; Hamm P
    J Phys Chem B; 2008 Dec; 112(48):15487-92. PubMed ID: 18991434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational energy transport in peptide helices after excitation of C-D modes in Leu-d10.
    Schade M; Moretto A; Crisma M; Toniolo C; Hamm P
    J Phys Chem B; 2009 Oct; 113(40):13393-7. PubMed ID: 19754053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared signatures of the peptide dynamical transition: a molecular dynamics simulation study.
    Kobus M; Nguyen PH; Stock G
    J Chem Phys; 2010 Jul; 133(3):034512. PubMed ID: 20649342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional infrared spectral signatures of 3(10)- and alpha-helical peptides.
    Maekawa H; Toniolo C; Broxterman QB; Ge NH
    J Phys Chem B; 2007 Mar; 111(12):3222-35. PubMed ID: 17388471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific vibrational dynamics of the CD3zeta membrane peptide using heterodyned two-dimensional infrared photon echo spectroscopy.
    Mukherjee P; Krummel AT; Fulmer EC; Kass I; Arkin IT; Zanni MT
    J Chem Phys; 2004 Jun; 120(21):10215-24. PubMed ID: 15268045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent vibrational energy transfer along a peptide helix.
    Kobus M; Nguyen PH; Stock G
    J Chem Phys; 2011 Mar; 134(12):124518. PubMed ID: 21456687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational spectroscopic characteristics of secondary structure polypeptides in liquid water: constrained MD simulation studies.
    Choi JH; Hahn S; Cho M
    Biopolymers; 2006 Dec; 83(5):519-36. PubMed ID: 16888772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study.
    Imamura H; Kato M
    Proteins; 2009 Jun; 75(4):911-8. PubMed ID: 19089951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transport in peptide helices: a comparison between high- and low-energy excitations.
    Backus EH; Nguyen PH; Botan V; Pfister R; Moretto A; Crisma M; Toniolo C; Stock G; Hamm P
    J Phys Chem B; 2008 Jul; 112(30):9091-9. PubMed ID: 18597522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset of 3(10)-helical secondary structure in aib oligopeptides probed by coherent 2D IR spectroscopy.
    Maekawa H; Formaggio F; Toniolo C; Ge NH
    J Am Chem Soc; 2008 May; 130(20):6556-66. PubMed ID: 18444622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting DNA vibrational circular dichroism spectra using a coupling model from two-dimensional infrared spectroscopy.
    Krummel AT; Zanni MT
    J Phys Chem B; 2006 Dec; 110(48):24720-7. PubMed ID: 17134235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding kinetics of a naturally occurring helical peptide: implication of the folding speed limit of helical proteins.
    Mukherjee S; Chowdhury P; Bunagan MR; Gai F
    J Phys Chem B; 2008 Jul; 112(30):9146-50. PubMed ID: 18610960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational-exciton couplings for the amide I, II, III, and A modes of peptides.
    Hayashi T; Mukamel S
    J Phys Chem B; 2007 Sep; 111(37):11032-46. PubMed ID: 17725341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-trapping of the N-H vibrational mode in alpha-helical polypeptides.
    Tsivlin DV; May V
    J Chem Phys; 2006 Dec; 125(22):224902. PubMed ID: 17176162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles free-energy analysis of helix stability: the origin of the low entropy in pi helices.
    Ismer L; Ireta J; Neugebauer J
    J Phys Chem B; 2008 Apr; 112(13):4109-12. PubMed ID: 18327931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Couplings between peptide linkages across a 3(10)-helical hydrogen bond revealed by two-dimensional infrared spectroscopy.
    Maekawa H; De Poli M; Toniolo C; Ge NH
    J Am Chem Soc; 2009 Feb; 131(6):2042-3. PubMed ID: 19199613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-helix stabilization within a peptide dendrimer.
    Javor S; Natalello A; Doglia SM; Reymond JL
    J Am Chem Soc; 2008 Dec; 130(51):17248-9. PubMed ID: 19053200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse thermal organogelation of poly(ethylene glycol)-polypeptide diblock copolymers in chloroform.
    Choi YY; Jeong Y; Joo MK; Jeong B
    Macromol Biosci; 2009 Sep; 9(9):869-74. PubMed ID: 19384979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of individual amino acids on the fast folding dynamics of alpha-helical peptides.
    Gooding EA; Ramajo AP; Wang J; Palmer C; Fouts E; Volk M
    Chem Commun (Camb); 2005 Dec; (48):5985-7. PubMed ID: 16333502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.