BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 19754092)

  • 1. Density functional calculation for Li2CuSn as an electrode material for rechargeable batteries.
    Reshak AH; Ordóñez Ortíz DA
    J Phys Chem B; 2009 Oct; 113(40):13208-15. PubMed ID: 19754092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-intercalated TiS2: electrode materials for rechargeable batteries as future power resources.
    Reshak AH
    J Phys Chem A; 2009 Feb; 113(8):1635-45. PubMed ID: 19183036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reversible copper extrusion-insertion electrode for rechargeable Li batteries.
    Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM
    Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and optical properties of 1T-TiS2 and lithium intercalated 1T-TiS2 for lithium batteries.
    Reshak AH; Kityk IV; Auluck S
    J Chem Phys; 2008 Aug; 129(7):074706. PubMed ID: 19044791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band structure, density of states, and optical susceptibilities of a novel lithium indium orthoborate Li3InB2O6.
    Reshak AH; Auluck S; Kityk IV
    J Phys Chem B; 2009 Aug; 113(34):11583-8. PubMed ID: 19642661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronically conductive phospho-olivines as lithium storage electrodes.
    Chung SY; Bloking JT; Chiang YM
    Nat Mater; 2002 Oct; 1(2):123-8. PubMed ID: 12618828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray photoelectron spectrum and electronic properties of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4): LDA, GGA, and EV-GGA.
    Reshak AH; Khenata R; Kityk IV; Plucinski KJ; Auluck S
    J Phys Chem B; 2009 Apr; 113(17):5803-8. PubMed ID: 19344138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic, linear, and nonlinear optical properties of III-V indium compound semiconductors.
    Reshak AH
    J Chem Phys; 2006 Jul; 125(3):34710. PubMed ID: 16863376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodes with high power and high capacity for rechargeable lithium batteries.
    Kang K; Meng YS; Bréger J; Grey CP; Ceder G
    Science; 2006 Feb; 311(5763):977-80. PubMed ID: 16484487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries.
    Shaju KM; Jiao F; Débart A; Bruce PG
    Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.
    Goyal A; Reddy AL; Ajayan PM
    Small; 2011 Jun; 7(12):1709-13. PubMed ID: 21574248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion.
    Ganapathy S; Wagemaker M
    ACS Nano; 2012 Oct; 6(10):8702-12. PubMed ID: 22953788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction.
    Kim MG; Sim S; Cho J
    Adv Mater; 2010 Dec; 22(45):5154-8. PubMed ID: 20941795
    [No Abstract]   [Full Text] [Related]  

  • 17. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries.
    Ait Salah A; Jozwiak P; Zaghib K; Garbarczyk J; Gendron F; Mauger A; Julien CM
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Dec; 65(5):1007-13. PubMed ID: 16716657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries.
    Jo MR; Jung YS; Kang YM
    Nanoscale; 2012 Nov; 4(21):6870-5. PubMed ID: 23026842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries.
    Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S
    J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and nonlinear optical susceptibilities of 3-phenylamino-4-phenyl-1,2,4-triazole-5-thione.
    Reshak AH; Stys D; Auluck S; Kityk IV
    J Phys Chem B; 2010 Feb; 114(5):1815-21. PubMed ID: 20085240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.