These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 19754092)
1. Density functional calculation for Li2CuSn as an electrode material for rechargeable batteries. Reshak AH; Ordóñez Ortíz DA J Phys Chem B; 2009 Oct; 113(40):13208-15. PubMed ID: 19754092 [TBL] [Abstract][Full Text] [Related]
2. Copper-intercalated TiS2: electrode materials for rechargeable batteries as future power resources. Reshak AH J Phys Chem A; 2009 Feb; 113(8):1635-45. PubMed ID: 19183036 [TBL] [Abstract][Full Text] [Related]
3. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878 [TBL] [Abstract][Full Text] [Related]
4. Electronic structure and optical properties of 1T-TiS2 and lithium intercalated 1T-TiS2 for lithium batteries. Reshak AH; Kityk IV; Auluck S J Chem Phys; 2008 Aug; 129(7):074706. PubMed ID: 19044791 [TBL] [Abstract][Full Text] [Related]
5. Band structure, density of states, and optical susceptibilities of a novel lithium indium orthoborate Li3InB2O6. Reshak AH; Auluck S; Kityk IV J Phys Chem B; 2009 Aug; 113(34):11583-8. PubMed ID: 19642661 [TBL] [Abstract][Full Text] [Related]
10. Electrodes with high power and high capacity for rechargeable lithium batteries. Kang K; Meng YS; Bréger J; Grey CP; Ceder G Science; 2006 Feb; 311(5763):977-80. PubMed ID: 16484487 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Shaju KM; Jiao F; Débart A; Bruce PG Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496 [TBL] [Abstract][Full Text] [Related]
12. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
13. High-performance lithium battery anodes using silicon nanowires. Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447 [TBL] [Abstract][Full Text] [Related]
15. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. Ganapathy S; Wagemaker M ACS Nano; 2012 Oct; 6(10):8702-12. PubMed ID: 22953788 [TBL] [Abstract][Full Text] [Related]
16. Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Kim MG; Sim S; Cho J Adv Mater; 2010 Dec; 22(45):5154-8. PubMed ID: 20941795 [No Abstract] [Full Text] [Related]
17. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Ait Salah A; Jozwiak P; Zaghib K; Garbarczyk J; Gendron F; Mauger A; Julien CM Spectrochim Acta A Mol Biomol Spectrosc; 2006 Dec; 65(5):1007-13. PubMed ID: 16716657 [TBL] [Abstract][Full Text] [Related]
18. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Jo MR; Jung YS; Kang YM Nanoscale; 2012 Nov; 4(21):6870-5. PubMed ID: 23026842 [TBL] [Abstract][Full Text] [Related]
19. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries. Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049 [TBL] [Abstract][Full Text] [Related]
20. Linear and nonlinear optical susceptibilities of 3-phenylamino-4-phenyl-1,2,4-triazole-5-thione. Reshak AH; Stys D; Auluck S; Kityk IV J Phys Chem B; 2010 Feb; 114(5):1815-21. PubMed ID: 20085240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]