BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3680 related articles for article (PubMed ID: 19754112)

  • 21. Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.
    Piletic IR; Tan HS; Fayer MD
    J Phys Chem B; 2005 Nov; 109(45):21273-84. PubMed ID: 16853758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio and DFT studies of the vibrational spectra of hydrogen-bonded PhOH...(H2O)4 complexes.
    Dimitrova Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Nov; 60(13):3049-57. PubMed ID: 15477143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution.
    Takeuchi S; Tahara T
    J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen bonding effects on the wavenumbers and absorption intensities of the OH fundamental and the first, second, and third overtones of phenol and 2,6-dihalogenated phenols studied by visible/near-infrared/infrared spectroscopy.
    Gonjo T; Futami Y; Morisawa Y; Wojcik MJ; Ozaki Y
    J Phys Chem A; 2011 Sep; 115(35):9845-53. PubMed ID: 21800903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Criteria for determining the hydrogen-bond structures of a tyrosine side chain by fourier transform infrared spectroscopy: density functional theory analyses of model hydrogen-bonded complexes of p-cresol.
    Takahashi R; Noguchi T
    J Phys Chem B; 2007 Dec; 111(49):13833-44. PubMed ID: 18020441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of hydrogen-bonded OH stretches as revealed by single-mode infrared-ultraviolet laser double resonance spectroscopy on supersonically cooled clusters of phenol.
    Doi A; Mikami N
    J Chem Phys; 2008 Oct; 129(15):154308. PubMed ID: 19045194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mode-selective O-H stretching relaxation in a hydrogen bond studied by ultrafast vibrational spectroscopy.
    Kozich V; Dreyer J; Ashihara S; Werncke W; Elsaesser T
    J Chem Phys; 2006 Aug; 125(7):074504. PubMed ID: 16942348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fourier transform infrared difference spectroscopy of photosystem II tyrosine D using site-directed mutagenesis and specific isotope labeling.
    Hienerwadel R; Boussac A; Breton J; Diner BA; Berthomieu C
    Biochemistry; 1997 Dec; 36(48):14712-23. PubMed ID: 9398191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibrational relaxation and coupling of two OH-stretch oscillators with an intramolecular hydrogen bond.
    Lock AJ; Gilijamse JJ; Woutersen S; Bakker HJ
    J Chem Phys; 2004 Feb; 120(5):2351-8. PubMed ID: 15268374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophobic solvation: a 2D IR spectroscopic inquest.
    Bakulin AA; Liang C; la Cour Jansen T; Wiersma DA; Bakker HJ; Pshenichnikov MS
    Acc Chem Res; 2009 Sep; 42(9):1229-38. PubMed ID: 19681584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen-bonded acetic acid dimers: anharmonic coupling and linear infrared spectra studied with density-functional theory.
    Dreyer J
    J Chem Phys; 2005 May; 122(18):184306. PubMed ID: 15918703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics and couplings of N-H stretching excitations of guanosine-cytidine base pairs in solution.
    Yang M; Szyc Ł; Röttger K; Fidder H; Nibbering ET; Elsaesser T; Temps F
    J Phys Chem B; 2011 May; 115(18):5484-92. PubMed ID: 21244064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C (L-ascorbic acid) and H2O.
    Dimitrova Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Feb; 63(2):427-37. PubMed ID: 16427351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibrational dynamics of the hydrogen bond in H(2)S-HF: Fourier-transform-infrared spectra and ab initio theory.
    Asselin P; Soulard P; Madebène B; Esmail Alikhani M; Lewerenz M
    Phys Chem Chem Phys; 2006 Apr; 8(15):1785-93. PubMed ID: 16633663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrast effect of hydrogen bonding on the acceptor and donor OH groups of intramolecularly hydrogen-bonded OH pairs in diols.
    Iwamoto R; Matsuda T; Kusanagi H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):97-104. PubMed ID: 16257699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
    Yagasaki T; Saito S
    Acc Chem Res; 2009 Sep; 42(9):1250-8. PubMed ID: 19469530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen-bond disruption by vibrational excitations in water.
    Wang Z; Pang Y; Dlott DD
    J Phys Chem A; 2007 May; 111(17):3196-208. PubMed ID: 17388394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: geometries and isotope and solvent effects.
    Tolstoy PM; Schah-Mohammedi P; Smirnov SN; Golubev NS; Denisov GS; Limbach HH
    J Am Chem Soc; 2004 May; 126(17):5621-34. PubMed ID: 15113234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 184.