These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 19754132)

  • 1. Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites.
    Han Z; Tay B; Tan C; Shakerzadeh M; Ostrikov KK
    ACS Nano; 2009 Oct; 3(10):3031-6. PubMed ID: 19754132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V; Garimella SV
    Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrowetting-based control of static droplet states on rough surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2007 Apr; 23(9):4918-24. PubMed ID: 17373831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers.
    Dhindsa MS; Smith NR; Heikenfeld J; Rack PD; Fowlkes JD; Doktycz MJ; Melechko AV; Simpson ML
    Langmuir; 2006 Oct; 22(21):9030-4. PubMed ID: 17014150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrowetting-induced dewetting transitions on superhydrophobic surfaces.
    Kumari N; Garimella SV
    Langmuir; 2011 Sep; 27(17):10342-6. PubMed ID: 21770408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2008 Aug; 24(15):8338-45. PubMed ID: 18598067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability conversion from superoleophobic to superhydrophilic on titania/single-walled carbon nanotube composite coatings.
    Zhang M; Zhang T; Cui T
    Langmuir; 2011 Aug; 27(15):9295-301. PubMed ID: 21732680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.
    Kumar NA; Bund A; Cho BG; Lim KT; Jeong YT
    Nanotechnology; 2009 Jun; 20(22):225608. PubMed ID: 19436092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct method of tracing the wetting states on nanocomposite surfaces.
    Wang KK; Yan H; Zhao CX; Xu G; Qi Y; Wu Y; Hu NX
    Langmuir; 2010 Jun; 26(11):7686-9. PubMed ID: 20459112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides.
    Pastine SJ; Okawa D; Kessler B; Rolandi M; Llorente M; Zettl A; Fréchet JM
    J Am Chem Soc; 2008 Apr; 130(13):4238-9. PubMed ID: 18331043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.
    Connolly T; Smith RC; Hernandez Y; Gun'ko Y; Coleman JN; Carey JD
    Small; 2009 Apr; 5(7):826-31. PubMed ID: 19199333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic tracking of Cassie to Wenzel wetting transitions.
    Dufour R; Saad N; Carlier J; Campistron P; Nassar G; Toubal M; Boukherroub R; Senez V; Nongaillard B; Thomy V
    Langmuir; 2013 Oct; 29(43):13129-34. PubMed ID: 24117124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid.
    Wu T; Pan Y; Li L
    J Colloid Interface Sci; 2010 Aug; 348(1):265-70. PubMed ID: 20427047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.