BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19754140)

  • 1. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.
    Li X; Zheng W; Zhang L; Yu P; Lin Y; Su L; Mao L
    Anal Chem; 2009 Oct; 81(20):8557-63. PubMed ID: 19754140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of components in guanidine hydrochloride to hemoglobin unfolding investigated by protein film electrochemistry.
    Mai Z; Zhao X; Dai Z; Zou X
    J Phys Chem B; 2010 May; 114(20):7090-7. PubMed ID: 20443588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct probing of the folding/unfolding event of bovine hemoglobin at montmorillonite clay modified electrode by adsorptive-transfer voltammetry.
    Zhao X; Mai Z; Dai Z; Zou X
    Talanta; 2011 Mar; 84(1):148-54. PubMed ID: 21315912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electrochemistry and bioelectrocatalysis of hemoglobin immobilized on carbon black.
    Ma GX; Lu TH; Xia YY
    Bioelectrochemistry; 2007 Nov; 71(2):180-5. PubMed ID: 17499558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on direct electron transfer and biocatalytic properties of hemoglobin in polyacrylonitrile matrix.
    Shan D; Wang S; Zhu D; Xue H
    Bioelectrochemistry; 2007 Nov; 71(2):198-203. PubMed ID: 17569598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of heme proteins with poly(propyleneimine) dendrimers in layer-by-layer assembly films under different pH conditions.
    He P; Li M; Hu N
    Biopolymers; 2005 Dec; 79(6):310-23. PubMed ID: 16127662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode.
    Xu J; Li W; Yin Q; Zhong H; Zhu Y; Jin L
    J Colloid Interface Sci; 2007 Nov; 315(1):170-6. PubMed ID: 17681509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical method for investigation of conformational flexibility of active sites of Trametes versicolor laccase based on sensitive determination of copper ion with cysteine-modified electrodes.
    Li X; Yu P; Yang L; Wang F; Mao L
    Anal Chem; 2012 Nov; 84(21):9416-21. PubMed ID: 23016928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO2 with vapor-surface sol-gel deposition.
    Shi G; Sun Z; Liu M; Zhang L; Liu Y; Qu Y; Jin L
    Anal Chem; 2007 May; 79(10):3581-8. PubMed ID: 17437331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.
    Zeng X; Wei W; Li X; Zeng J; Wu L
    Bioelectrochemistry; 2007 Nov; 71(2):135-41. PubMed ID: 17398166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode.
    Zhu JT; Shi CG; Xu JJ; Chen HY
    Bioelectrochemistry; 2007 Nov; 71(2):243-8. PubMed ID: 17702670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly.
    Zhang R; Wang X; Shiu KK
    J Colloid Interface Sci; 2007 Dec; 316(2):517-22. PubMed ID: 17904150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film.
    Wang Q; Lu G; Yang B
    Biosens Bioelectron; 2004 May; 19(10):1269-75. PubMed ID: 15046759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly.
    Feng JJ; Xu JJ; Chen HY
    Biosens Bioelectron; 2007 Mar; 22(8):1618-24. PubMed ID: 16919440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetric behavior of hemoglobin alpha- and beta- subunits during acid-induced denaturation observed by electrospray mass spectrometry.
    Boys BL; Kuprowski MC; Konermann L
    Biochemistry; 2007 Sep; 46(37):10675-84. PubMed ID: 17718518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase.
    Wani AH; Udgaonkar JB
    J Mol Biol; 2009 Mar; 387(2):348-62. PubMed ID: 19356591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.