These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19754156)

  • 1. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore.
    Alexander C; Ivetac A; Liu X; Norimatsu Y; Serrano JR; Landstrom A; Sansom M; Dawson DC
    Biochemistry; 2009 Oct; 48(42):10078-88. PubMed ID: 19754156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway.
    Liu X; Dawson DC
    Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore.
    Norimatsu Y; Ivetac A; Alexander C; Kirkham J; O'Donnell N; Dawson DC; Sansom MS
    Biochemistry; 2012 Mar; 51(11):2199-212. PubMed ID: 22352759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J; Hwang TC
    Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore.
    Serrano JR; Liu X; Borg ER; Alexander CS; Shaw CF; Dawson DC
    Biophys J; 2006 Sep; 91(5):1737-48. PubMed ID: 16766608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2010 Oct; 285(42):32126-40. PubMed ID: 20675380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
    Mansoura MK; Smith SS; Choi AD; Richards NW; Strong TV; Drumm ML; Collins FS; Dawson DC
    Biophys J; 1998 Mar; 74(3):1320-32. PubMed ID: 9512029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator.
    Norimatsu Y; Ivetac A; Alexander C; O'Donnell N; Frye L; Sansom MS; Dawson DC
    Mol Pharmacol; 2012 Dec; 82(6):1042-55. PubMed ID: 22923500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative contribution of different transmembrane segments to the CFTR chloride channel pore.
    Wang W; El Hiani Y; Rubaiy HN; Linsdell P
    Pflugers Arch; 2014 Mar; 466(3):477-90. PubMed ID: 23955087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
    Gao X; Bai Y; Hwang TC
    Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore.
    Liu X; Zhang ZR; Fuller MD; Billingsley J; McCarty NA; Dawson DC
    Biophys J; 2004 Dec; 87(6):3826-41. PubMed ID: 15361410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A; Hogan MS; Cowley EA; Linsdell P
    Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localizing a gate in CFTR.
    Gao X; Hwang TC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2461-6. PubMed ID: 25675504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.
    Holstead RG; Li MS; Linsdell P
    J Membr Biol; 2011 Oct; 243(1-3):15-23. PubMed ID: 21796426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFTR: what's it like inside the pore?
    Liu X; Smith SS; Dawson DC
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):69-75. PubMed ID: 14598388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.