These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 19754156)
21. Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. Liu X; Alexander C; Serrano J; Borg E; Dawson DC J Biol Chem; 2006 Mar; 281(12):8275-85. PubMed ID: 16436375 [TBL] [Abstract][Full Text] [Related]
22. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Zhou JJ; Fatehi M; Linsdell P Pflugers Arch; 2008 Nov; 457(2):351-60. PubMed ID: 18449561 [TBL] [Abstract][Full Text] [Related]
23. Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Rubaiy HN; Linsdell P J Physiol Sci; 2015 May; 65(3):233-41. PubMed ID: 25673337 [TBL] [Abstract][Full Text] [Related]
24. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. Smith SS; Liu X; Zhang ZR; Sun F; Kriewall TE; McCarty NA; Dawson DC J Gen Physiol; 2001 Oct; 118(4):407-31. PubMed ID: 11585852 [TBL] [Abstract][Full Text] [Related]
25. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes. Ge N; Linsdell P J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779 [TBL] [Abstract][Full Text] [Related]
26. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). Bai Y; Li M; Hwang TC J Gen Physiol; 2011 Nov; 138(5):495-507. PubMed ID: 22042986 [TBL] [Abstract][Full Text] [Related]
27. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment. Cheung M; Akabas MH Biophys J; 1996 Jun; 70(6):2688-95. PubMed ID: 8744306 [TBL] [Abstract][Full Text] [Related]
28. Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance. Linsdell P; Irving CL; Cowley EA; El Hiani Y Cell Mol Life Sci; 2021 Jun; 78(12):5213-5223. PubMed ID: 34023918 [TBL] [Abstract][Full Text] [Related]
29. State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore. Fatehi M; Linsdell P J Biol Chem; 2008 Mar; 283(10):6102-9. PubMed ID: 18167343 [TBL] [Abstract][Full Text] [Related]
30. Mutations at arginine 352 alter the pore architecture of CFTR. Cui G; Zhang ZR; O'Brien AR; Song B; McCarty NA J Membr Biol; 2008 Mar; 222(2):91-106. PubMed ID: 18421494 [TBL] [Abstract][Full Text] [Related]
31. The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions. Qian F; Liu L; Liu Z; Lu C Physiol Res; 2016 Jul; 65(3):505-15. PubMed ID: 27070741 [TBL] [Abstract][Full Text] [Related]
32. Interactions between permeant and blocking anions inside the CFTR chloride channel pore. Linsdell P Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339 [TBL] [Abstract][Full Text] [Related]
33. Anion conductance selectivity mechanism of the CFTR chloride channel. Linsdell P Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604 [TBL] [Abstract][Full Text] [Related]
34. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel. Negoda A; El Hiani Y; Cowley EA; Linsdell P Biochim Biophys Acta Biomembr; 2017 May; 1859(5):1049-1058. PubMed ID: 28235470 [TBL] [Abstract][Full Text] [Related]
35. Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. Gong X; Linsdell P J Physiol; 2003 Jun; 549(Pt 2):387-97. PubMed ID: 12679372 [TBL] [Abstract][Full Text] [Related]