These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 19754156)
41. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). Wang W; Linsdell P J Biol Chem; 2012 Mar; 287(13):10156-10165. PubMed ID: 22303012 [TBL] [Abstract][Full Text] [Related]
42. Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Cheung M; Akabas MH J Gen Physiol; 1997 Mar; 109(3):289-99. PubMed ID: 9089437 [TBL] [Abstract][Full Text] [Related]
43. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator. Chen EY; Bartlett MC; Loo TW; Clarke DM J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010 [TBL] [Abstract][Full Text] [Related]
44. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946 [TBL] [Abstract][Full Text] [Related]
45. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. Zhang ZR; Song B; McCarty NA J Biol Chem; 2005 Dec; 280(51):41997-2003. PubMed ID: 16227620 [TBL] [Abstract][Full Text] [Related]
46. Architecture and functional properties of the CFTR channel pore. Linsdell P Cell Mol Life Sci; 2017 Jan; 74(1):67-83. PubMed ID: 27699452 [TBL] [Abstract][Full Text] [Related]
47. Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Ge N; Muise CN; Gong X; Linsdell P J Biol Chem; 2004 Dec; 279(53):55283-9. PubMed ID: 15504721 [TBL] [Abstract][Full Text] [Related]
48. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore. Gupta J; Lindsell P Mol Membr Biol; 2003; 20(1):45-52. PubMed ID: 12745925 [TBL] [Abstract][Full Text] [Related]
49. Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. Zhang ZR; Cui G; Liu X; Song B; Dawson DC; McCarty NA J Biol Chem; 2005 Jan; 280(1):458-68. PubMed ID: 15504728 [TBL] [Abstract][Full Text] [Related]
50. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. Chaves LA; Gadsby DC J Gen Physiol; 2015 Apr; 145(4):261-83. PubMed ID: 25825169 [TBL] [Abstract][Full Text] [Related]
51. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. El Hiani Y; Linsdell P J Biol Chem; 2015 Jun; 290(25):15855-15865. PubMed ID: 25944907 [TBL] [Abstract][Full Text] [Related]
52. Electrostatic Tuning of Anion Attraction from the Cytoplasm to the Pore of the CFTR Chloride Channel. Linsdell P; Negoda A; Cowley EA; El Hiani Y Cell Biochem Biophys; 2020 Mar; 78(1):15-22. PubMed ID: 31893350 [TBL] [Abstract][Full Text] [Related]
53. Interaction between 2 extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel. Broadbent SD; Wang W; Linsdell P Biochem Cell Biol; 2014 Oct; 92(5):390-6. PubMed ID: 25253636 [TBL] [Abstract][Full Text] [Related]
54. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Linsdell P Exp Physiol; 2006 Jan; 91(1):123-9. PubMed ID: 16157656 [TBL] [Abstract][Full Text] [Related]
55. On the relationship between anion binding and chloride conductance in the CFTR anion channel. Linsdell P Biochim Biophys Acta Biomembr; 2021 Apr; 1863(4):183558. PubMed ID: 33444622 [TBL] [Abstract][Full Text] [Related]
56. CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane. Liu X; Smith SS; Sun F; Dawson DC J Gen Physiol; 2001 Oct; 118(4):433-46. PubMed ID: 11585853 [TBL] [Abstract][Full Text] [Related]
57. Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties. Zhou JJ; Linsdell P Can J Physiol Pharmacol; 2009 May; 87(5):387-95. PubMed ID: 19448737 [TBL] [Abstract][Full Text] [Related]
58. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore. Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562 [TBL] [Abstract][Full Text] [Related]
59. Coupled movement of permeant and blocking ions in the CFTR chloride channel pore. Gong X; Linsdell P J Physiol; 2003 Jun; 549(Pt 2):375-85. PubMed ID: 12679371 [TBL] [Abstract][Full Text] [Related]
60. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel. Aubin CN; Linsdell P J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]