These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19754204)

  • 1. Asymmetries in transition metal XPS spectra: metal nanoparticle structure, and interaction with the graphene-structured substrate surface.
    Sacher E
    Langmuir; 2010 Mar; 26(6):3807-14. PubMed ID: 19754204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron paramagnetic resonance of D-xylose isomerase: evidence for metal ion movement induced by binding of cyclic substrates and inhibitors.
    Bogumil R; Kappl R; Hüttermann J; Witzel H
    Biochemistry; 1997 Mar; 36(9):2345-52. PubMed ID: 9054539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates.
    Xu C; Wang X
    Small; 2009 Oct; 5(19):2212-7. PubMed ID: 19662647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry under cover: tuning metal-graphene interaction by reactive intercalation.
    Sutter P; Sadowski JT; Sutter EA
    J Am Chem Soc; 2010 Jun; 132(23):8175-9. PubMed ID: 20527937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic consequences of a mixed valence excited state: quantitative treatment of a dihydrazine diradical dication.
    Lockard JV; Zink JI; Konradsson AE; Weaver MN; Nelsen SF
    J Am Chem Soc; 2003 Nov; 125(44):13471-80. PubMed ID: 14583043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial electron transfer in metal cyanide-sensitized TiO2 nanoparticles.
    Harris JA; Trotter K; Brunschwig BS
    J Phys Chem B; 2007 Jun; 111(24):6695-702. PubMed ID: 17402776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy.
    Grosvenor AP; Wik SD; Cavell RG; Mar A
    Inorg Chem; 2005 Nov; 44(24):8988-98. PubMed ID: 16296854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong metal adatom-substrate interaction of Gd and Fe with graphene.
    Hupalo M; Binz S; Tringides MC
    J Phys Condens Matter; 2011 Feb; 23(4):045005. PubMed ID: 21406879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS.
    Tunc I; Demirok UK; Suzer S; Correa-Duatre MA; Liz-Marzan LM
    J Phys Chem B; 2005 Dec; 109(50):24182-4. PubMed ID: 16375410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide.
    Risberg ED; Jalilehvand F; Leung BO; Pettersson LG; Sandström M
    Dalton Trans; 2009 May; (18):3542-58. PubMed ID: 19381417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces.
    Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM
    J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of the interaction of evaporated Pt nanoparticles with variously treated surfaces of highly oriented pyrolytic graphite.
    Yang DQ; Zhang GX; Sacher E; José-Yacaman M; Elizondo N
    J Phys Chem B; 2006 Apr; 110(16):8348-56. PubMed ID: 16623519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.