BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 197547)

  • 1. Biomedical applications of fibre-entrapped enzymes.
    Bartoli F; Giovenco S; Lostia O; Marconi W; Morisi F; Pittalis F; Prosperi G; Spotorno G; Balsano F; Cordova C; Musca A
    Pharmacol Res Commun; 1977 Jun; 9(6):521-46. PubMed ID: 197547
    [No Abstract]   [Full Text] [Related]  

  • 2. [Fluorimetric study of immobilized yeast D-glyceraldehyde-3-phosphatase and its subunits. Binding of NAD+].
    Muronets VI; Ashmarina DI; Permiakov EA; Nagradova NK
    Dokl Akad Nauk SSSR; 1987; 293(3):732-6. PubMed ID: 3556120
    [No Abstract]   [Full Text] [Related]  

  • 3. The immobilization of enzymes on nylon structures and their use in automated analysis.
    Inman DJ; Hornby WE
    Biochem J; 1972 Sep; 129(2):255-62. PubMed ID: 4643309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction of immobilized dimer form of D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscles with coenzyme].
    Duzhenkova IV; Asriiants RA; Nagradova NK
    Dokl Akad Nauk SSSR; 1988; 301(3):738-42. PubMed ID: 3191830
    [No Abstract]   [Full Text] [Related]  

  • 5. Immobilized enzymes in biochemical analysis.
    Everse J; Ginsburgh CL; Kaplan NO
    Methods Biochem Anal; 1979; 25():135-201. PubMed ID: 372734
    [No Abstract]   [Full Text] [Related]  

  • 6. Immobilized enzymes in organic synthesis.
    Mosbach K
    Ciba Found Symp; 1985; 111():57-70. PubMed ID: 3848379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of metabolites applying fibre-entrapped enzymes in a calorimetric system. I -- Glucose and urea determination.
    Marconi W; Bartoli F; Morisi F; Pittalis F
    Int J Artif Organs; 1979 May; 2(3):159-62. PubMed ID: 468407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of the sorption immobilization of coenzyme-dependent oxidoreductases and their functions in electro-enzymatic processes and biological membranes].
    Shapovalov IuA; Gladyshev PP
    Mol Biol (Mosk); 1985; 19(3):662-70. PubMed ID: 3162093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of immobilized subunits of 20 beta-hydroxysteroid dehydrogenase.
    Carrea G; Pasta P
    Methods Enzymol; 1987; 135():475-83. PubMed ID: 3474489
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of specific interactions of coenzymes, regulatory nucleotides and cibacron blue with nucleotide binding domains of enzymes by analytical affinity chromatography.
    Thresher WC; Swaisgood HE
    J Mol Recognit; 1990; 3(5-6):220-8. PubMed ID: 2096889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Immobilized active monomers of D-glyceraldehyde-3-phosphate dehydrogenase from rabbit skeletal muscles and their coenzyme-binding properties].
    Duzhenkova IV; Asriiants RA; Muronets VI; Nagradova NK
    Biokhimiia; 1986 Nov; 51(11):1899-907. PubMed ID: 3801552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural modifications induced by the entrapped glucose oxidase in cross-linked polyacrylamide microgels used as glucose sensors.
    Retama JR; Lopez-Ruiz B; Lopez-Cabarcos E
    Biomaterials; 2003 Aug; 24(17):2965-73. PubMed ID: 12742736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilized enzymes in continuous-flow analysis.
    Werner M; Mohrbacher RJ; Riendeau CJ; Murador E; Cambiaghi S
    Clin Chem; 1979 Jan; 25(1):20-3. PubMed ID: 761373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection.
    Duong HD; Rhee JI
    Anal Chim Acta; 2008 Sep; 626(1):53-61. PubMed ID: 18761121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Simultaneous autoanalysis by micromethod of urea and glucose in biological fluids].
    Lavoinne A; Maitrot B; Matray F
    Ann Biol Clin (Paris); 1973; 31(6):455-8. PubMed ID: 4786510
    [No Abstract]   [Full Text] [Related]  

  • 16. Conversion of ammonia or urea into essential amino acids, L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD. L-lactic dehydrogenase for coenzyme recycling.
    Gu KF; Chang TM
    Appl Biochem Biotechnol; 1990 Nov; 26(2):115-24. PubMed ID: 1708978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of ammonia or urea into L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD+. Glucose dehydrogenase for co-factor recycling.
    Gu KF; Chang TM
    ASAIO Trans; 1988; 34(1):24-8. PubMed ID: 2454127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of immobilized enzyme column reactors in clinical analysis.
    Murachi T; Tabata M
    Methods Enzymol; 1988; 137():260-71. PubMed ID: 3374340
    [No Abstract]   [Full Text] [Related]  

  • 19. Flow injection analysis and biosensors: applications for biotechnology and environmental control.
    Lüdi H; Garn MB; Bataillard P; Widmer HM
    J Biotechnol; 1990 Apr; 14(1):71-9. PubMed ID: 1366526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Automatic estimation of urea and glucose in 20 microliter samples].
    Boigné JM; Boigné N
    Ann Biol Clin (Paris); 1968; 26(3):365-73. PubMed ID: 5656047
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.