These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19754740)

  • 1. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti.
    Traver BE; Anderson MA; Adelman ZN
    Insect Mol Biol; 2009 Oct; 18(5):623-33. PubMed ID: 19754740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germline excision of transgenes in Aedes aegypti by homing endonucleases.
    Aryan A; Anderson MA; Myles KM; Adelman ZN
    Sci Rep; 2013; 3():1603. PubMed ID: 23549343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of highly site-specific DNA double-strand breaks in human cells by the homing endonucleases I-PpoI and I-CreI.
    Monnat RJ; Hackmann AF; Cantrell MA
    Biochem Biophys Res Commun; 1999 Feb; 255(1):88-93. PubMed ID: 10082660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High efficiency, site-specific excision of a marker gene by the phage P1 cre-loxP system in the yellow fever mosquito, Aedes aegypti.
    Jasinskiene N; Coates CJ; Ashikyan A; James AA
    Nucleic Acids Res; 2003 Nov; 31(22):e147. PubMed ID: 14602940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgene removal using an in cis programmed homing endonuclease via single-strand annealing in the mosquito Aedes aegypti.
    Chae K; Contreras B; Romanowski JS; Dawson C; Myles KM; Adelman ZN
    Commun Biol; 2024 May; 7(1):660. PubMed ID: 38811748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti.
    Kistler KE; Vosshall LB; Matthews BJ
    Cell Rep; 2015 Apr; 11(1):51-60. PubMed ID: 25818303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of homing endonuclease I-SceI with altered sequence specificity.
    Chen Z; Wen F; Sun N; Zhao H
    Protein Eng Des Sel; 2009 Apr; 22(4):249-56. PubMed ID: 19176595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti.
    Basu S; Aryan A; Overcash JM; Samuel GH; Anderson MA; Dahlem TJ; Myles KM; Adelman ZN
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4038-43. PubMed ID: 25775608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive selection method for directed evolution of homing endonucleases.
    Chen Z; Zhao H
    Nucleic Acids Res; 2005 Oct; 33(18):e154. PubMed ID: 16214805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in El Salvador, vector of dengue, yellow fever, chikungunya and Zika.
    Joyce AL; Torres MM; Torres R; Moreno M
    Parasit Vectors; 2018 Dec; 11(1):637. PubMed ID: 30547835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal.
    Sylla M; Bosio C; Urdaneta-Marquez L; Ndiaye M; Black WC
    PLoS Negl Trop Dis; 2009; 3(4):e408. PubMed ID: 19365540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an endogenous gene expressed in Aedes aegypti using an orally infectious recombinant Sindbis virus.
    Cheng LL; Bartholomay LC; Olson KE; Lowenberger C; Vizioli J; Higgs S; Beaty BJ; Christensen BM
    J Insect Sci; 2001; 1():10. PubMed ID: 15455070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a chimeric sindbis virus with enhanced per Os infection of Aedes aegypti.
    Seabaugh RC; Olson KE; Higgs S; Carlson JO; Beaty BJ
    Virology; 1998 Mar; 243(1):99-112. PubMed ID: 9527919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly.
    Jasinskiene N; Coates CJ; Benedict MQ; Cornel AJ; Rafferty CS; James AA; Collins FH
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3743-7. PubMed ID: 9520437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti.
    Sanders HR; Foy BD; Evans AM; Ross LS; Beaty BJ; Olson KE; Gill SS
    Insect Biochem Mol Biol; 2005 Nov; 35(11):1293-307. PubMed ID: 16203210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus.
    Plessis A; Perrin A; Haber JE; Dujon B
    Genetics; 1992 Mar; 130(3):451-60. PubMed ID: 1551570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dengue receptor as possible genetic marker of vector competence in Aedes aegypti.
    Mercado-Curiel RF; Black WC; Muñoz Mde L
    BMC Microbiol; 2008 Jul; 8():118. PubMed ID: 18625079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities.
    Agha SB; Tchouassi DP; Bastos ADS; Sang R
    Parasit Vectors; 2017 Dec; 10(1):628. PubMed ID: 29284522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia.
    Jaimes-Dueñez J; Arboleda S; Triana-Chávez O; Gómez-Palacio A
    PLoS Negl Trop Dis; 2015 Apr; 9(4):e0003553. PubMed ID: 25893246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.