These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 19754981)

  • 1. Spectrum simulation in DTSA-II.
    Ritchie NW
    Microsc Microanal; 2009 Oct; 15(5):454-68. PubMed ID: 19754981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using DTSA-II to simulate and interpret energy dispersive spectra from particles.
    Ritchie NW
    Microsc Microanal; 2010 Jun; 16(3):248-58. PubMed ID: 20403232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Simulation of Secondary Fluorescence Via NIST DTSA-II Monte Carlo.
    Ritchie NWM
    Microsc Microanal; 2017 Jun; 23(3):618-633. PubMed ID: 28285604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating electron-excited energy dispersive X-ray spectra with the NIST DTSA-II open-source software platform.
    Newbury DE; Ritchie NWM
    MRS Adv; 2022; 7(31):. PubMed ID: 36619829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-Dispersive X-Ray Spectrum Simulation with NIST DTSA-II: Comparing Simulated and Measured Electron-Excited Spectra.
    Newbury DE; Ritchie NWM
    Microsc Microanal; 2022 Sep; ():1-12. PubMed ID: 36052846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Win X-ray: a new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope.
    Gauvin R; Lifshin E; Demers H; Horny P; Campbell H
    Microsc Microanal; 2006 Feb; 12(1):49-64. PubMed ID: 17481341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary Fluorescence Correction for Characteristic and Bremsstrahlung X-Rays Using Monte Carlo X-ray Depth Distributions Applied to Bulk and Multilayer Materials.
    Yuan Y; Demers H; Rudinsky S; Gauvin R
    Microsc Microanal; 2019 Feb; 25(1):92-104. PubMed ID: 30869578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Trace Constituents by Electron-Excited X-Ray Microanalysis with Energy-Dispersive Spectrometry.
    Newbury DE; Ritchie NW
    Microsc Microanal; 2016 Jun; 22(3):520-35. PubMed ID: 27329308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of 3D elemental mapping artefacts in biological specimens using Monte Carlo simulation.
    Scott K; Ritchie NW
    J Microsc; 2009 Feb; 233(2):331-9. PubMed ID: 19220700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of a clearance box monitor used for nuclear power plant decommissioning.
    Bochud FO; Laedermann JP; Bailat CJ; Schuler C
    Health Phys; 2009 May; 96(5):575-86. PubMed ID: 19359851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of photon energy spectra from Varian 2100C and 2300C/D Linacs: simplified estimates with PENELOPE Monte Carlo models.
    Baumgartner A; Steurer A; Maringer FJ
    Appl Radiat Isot; 2009 Nov; 67(11):2007-12. PubMed ID: 19692253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron probe X-ray microanalysis for the study of cell physiology.
    Fernandez-Segura E; Warley A
    Methods Cell Biol; 2008; 88():19-43. PubMed ID: 18617026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PENEPMA: A Monte Carlo Program for the Simulation of X-Ray Emission in Electron Probe Microanalysis.
    Llovet X; Salvat F
    Microsc Microanal; 2017 Jun; 23(3):634-646. PubMed ID: 28502269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum pixel spectrum: a new tool for detecting and recovering rare, unanticipated features from spectrum image data cubes.
    Bright DS; Newbury DE
    J Microsc; 2004 Nov; 216(Pt 2):186-93. PubMed ID: 15516230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Iterative Qualitative-Quantitative Sequential Analysis Strategy for Electron-Excited X-ray Microanalysis with Energy Dispersive Spectrometry: Finding the Unexpected Needles in the Peak Overlap Haystack.
    Newbury DE; Ritchie NWM
    Microsc Microanal; 2018 Aug; 24(4):350-373. PubMed ID: 30175703
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Moy A; Fournelle J
    Microsc Microanal; 2021 Apr; 27(2):266-283. PubMed ID: 33551014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical aspects of carbon content determination in carburized steels by EPMA.
    Robaut F; Crisci A; Durand-Charre M; Jouanne D
    Microsc Microanal; 2006 Aug; 12(4):331-4. PubMed ID: 16842648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray microanalysis of porous materials using Monte Carlo simulations.
    Poirier D; Gauvin R
    Scanning; 2011; 33(3):126-34. PubMed ID: 21773976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Impact of Secondary Fluorescence on X-Ray Microanalysis Results from Semiconductor Thin Films.
    Hunter DA; Lavery SP; Edwards PR; Martin RW
    Microsc Microanal; 2022 May; ():1-12. PubMed ID: 35611839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling charge transport in organic photovoltaic materials.
    Nelson J; Kwiatkowski JJ; Kirkpatrick J; Frost JM
    Acc Chem Res; 2009 Nov; 42(11):1768-78. PubMed ID: 19848409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.