BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19755501)

  • 1. Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase.
    Chang KM; Hendrickson TL
    Nucleic Acids Res; 2009 Nov; 37(20):6942-9. PubMed ID: 19755501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases.
    Lee J; Hendrickson TL
    J Mol Biol; 2004 Dec; 344(5):1167-74. PubMed ID: 15561136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates.
    Salazar JC; Ahel I; Orellana O; Tumbula-Hansen D; Krieger R; Daniels L; Söll D
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13863-8. PubMed ID: 14615592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln.
    Huot JL; Fischer F; Corbeil J; Madore E; Lorber B; Diss G; Hendrickson TL; Kern D; Lapointe J
    Nucleic Acids Res; 2011 Nov; 39(21):9306-15. PubMed ID: 21813455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera?
    Dasgupta S; Basu G
    BMC Evol Biol; 2014 Feb; 14():26. PubMed ID: 24521160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
    Guo LT; Helgadóttir S; Söll D; Ling J
    Nucleic Acids Res; 2012 Sep; 40(16):7967-74. PubMed ID: 22661575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamyl-tRNA sythetase.
    Freist W; Gauss DH; Söll D; Lapointe J
    Biol Chem; 1997 Nov; 378(11):1313-29. PubMed ID: 9426192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination.
    Dasgupta S; Saha R; Dey C; Banerjee R; Roy S; Basu G
    FEBS Lett; 2009 Jun; 583(12):2114-20. PubMed ID: 19481543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase.
    Hong KW; Ibba M; Weygand-Durasevic I; Rogers MJ; Thomann HU; Söll D
    EMBO J; 1996 Apr; 15(8):1983-91. PubMed ID: 8617245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major identity element of glutamine tRNAs from Bacillus subtilis and Escherichia coli in the reaction with B. subtilis glutamyl-tRNA synthetase.
    Kim SI; Söll D
    Mol Cells; 1998 Aug; 8(4):459-65. PubMed ID: 9749534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs.
    Sherman JM; Söll D
    Biochemistry; 1996 Jan; 35(2):601-7. PubMed ID: 8555233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging.
    Rogers KC; Söll D
    J Mol Evol; 1995 May; 40(5):476-81. PubMed ID: 7783222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo formation of glutamyl-tRNA(Gln) in Escherichia coli by heterologous glutamyl-tRNA synthetases.
    Núñez H; Lefimil C; Min B; Söll D; Orellana O
    FEBS Lett; 2004 Jan; 557(1-3):133-5. PubMed ID: 14741355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Adachi T; Inokuchi H; Söll D
    Biochimie; 1993; 75(12):1083-90. PubMed ID: 8199243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions.
    Ito T; Yokoyama S
    Nature; 2010 Sep; 467(7315):612-6. PubMed ID: 20882017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase.
    Sekine S; Nureki O; Shimada A; Vassylyev DG; Yokoyama S
    Nat Struct Biol; 2001 Mar; 8(3):203-6. PubMed ID: 11224561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
    Frugier M; Söll D; Giegé R; Florentz C
    Biochemistry; 1994 Aug; 33(33):9912-21. PubMed ID: 8060999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution.
    Skouloubris S; Ribas de Pouplana L; De Reuse H; Hendrickson TL
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11297-302. PubMed ID: 13679580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.