BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19756045)

  • 1. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism.
    Nakahigashi K; Toya Y; Ishii N; Soga T; Hasegawa M; Watanabe H; Takai Y; Honma M; Mori H; Tomita M
    Mol Syst Biol; 2009; 5():306. PubMed ID: 19756045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase.
    Koendjbiharie JG; Hon S; Pabst M; Hooftman R; Stevenson DM; Cui J; Amador-Noguez D; Lynd LR; Olson DG; van Kranenburg R
    J Biol Chem; 2020 Feb; 295(7):1867-1878. PubMed ID: 31871051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metabolite-centric view on flux distributions in genome-scale metabolic models.
    Riemer SA; Rex R; Schomburg D
    BMC Syst Biol; 2013 Apr; 7():33. PubMed ID: 23587327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources.
    Ahn J; Chung BK; Lee DY; Park M; Karimi IA; Jung JK; Lee H
    FEMS Microbiol Lett; 2011 Nov; 324(1):10-6. PubMed ID: 22092758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metabolic bypass of the triosephosphate isomerase reaction.
    Desai KK; Miller BG
    Biochemistry; 2008 Aug; 47(31):7983-5. PubMed ID: 18620424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.
    Long CP; Gonzalez JE; Sandoval NR; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():102-113. PubMed ID: 27212692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments.
    Tong M; French S; El Zahed SS; Ong WK; Karp PD; Brown ED
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway.
    Follstad BD; Stephanopoulos G
    Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transaldolase of Methanocaldococcus jannaschii.
    Soderberg T; Alver RC
    Archaea; 2004 Oct; 1(4):255-62. PubMed ID: 15810435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux analysis for Escherichia coli by flux balance analysis.
    Matsuoka Y; Shimizu K
    Methods Mol Biol; 2014; 1191():237-60. PubMed ID: 25178795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using (13)C metabolic flux analysis.
    Usui Y; Hirasawa T; Furusawa C; Shirai T; Yamamoto N; Mori H; Shimizu H
    Microb Cell Fact; 2012 Jun; 11():87. PubMed ID: 22721472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures.
    Kumar R; Shimizu K
    Microb Cell Fact; 2011 Jan; 10():3. PubMed ID: 21272324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli.
    North JA; Wildenthal JA; Erb TJ; Evans BS; Byerly KM; Gerlt JA; Tabita FR
    Mol Microbiol; 2020 May; 113(5):923-937. PubMed ID: 31950558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ¹³C-metabolic flux analysis for Escherichia coli.
    Matsuoka Y; Shimizu K
    Methods Mol Biol; 2014; 1191():261-89. PubMed ID: 25178796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase.
    Valgepea K; Adamberg K; Nahku R; Lahtvee PJ; Arike L; Vilu R
    BMC Syst Biol; 2010 Dec; 4():166. PubMed ID: 21122111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains.
    Sprenger GA; Schörken U; Sprenger G; Sahm H
    J Bacteriol; 1995 Oct; 177(20):5930-6. PubMed ID: 7592346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.