These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 19756111)

  • 1. Low-contrast bandgaps of a planar parabolic spiral lattice.
    Pollard ME; Parker GJ
    Opt Lett; 2009 Sep; 34(18):2805-7. PubMed ID: 19756111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups.
    Maldovan M; Ullal CK; Carter WC; Thomas EL
    Nat Mater; 2003 Oct; 2(10):664-7. PubMed ID: 12970758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals.
    Cheng SC; Zhu X; Yang S
    Opt Express; 2009 Sep; 17(19):16710-5. PubMed ID: 19770885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap.
    Bayer C; Straub M
    Appl Opt; 2009 Sep; 48(27):5050-4. PubMed ID: 19767917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete photonic bandgaps in 12-fold symmetric quasicrystals.
    Zoorob ME; Charlton MD; Parker GJ; Baumberg JJ; Netti MC
    Nature; 2000 Apr; 404(6779):740-3. PubMed ID: 10783882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional control of light in a two-dimensional photonic crystal slab.
    Chow E; Lin SY; Johnson SG; Villeneuve PR; Joannopoulos JD; Wendt JR; Vawter GA; Zubrzycki W; Hou H; Alleman A
    Nature; 2000 Oct; 407(6807):983-6. PubMed ID: 11069173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier-Bessel analysis of localized states and photonic bandgaps in 12-fold photonic quasi-crystals.
    Newman SR; Gauthier RC
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2344-9. PubMed ID: 23201795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission.
    Temelkuran B; Hart SD; Benoit G; Joannopoulos JD; Fink Y
    Nature; 2002 Dec; 420(6916):650-3. PubMed ID: 12478288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz demonstrations of effectively two-dimensional photonic bandgap structures.
    Zhao Y; Grischkowsky D
    Opt Lett; 2006 May; 31(10):1534-6. PubMed ID: 16642163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis.
    Park JH; Choi WS; Koo HY; Hong JC; Kim DY
    Langmuir; 2006 Jan; 22(1):94-100. PubMed ID: 16378406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of direct-bandgap semiconductors that lattice-match silicon.
    Zhang P; Crespi VH; Chang E; Louie SG; Cohen ML
    Nature; 2001 Jan; 409(6816):69-71. PubMed ID: 11343113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices.
    Onuki T; Ohtera Y; Tokizaki T
    J Microsc; 2008 Mar; 229(Pt 3):447-51. PubMed ID: 18331493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation and tuning of hypersonic bandgaps in colloidal crystals.
    Cheng W; Wang J; Jonas U; Fytas G; Stefanou N
    Nat Mater; 2006 Oct; 5(10):830-6. PubMed ID: 16951677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double photonic bandgap hollow-core photonic crystal fiber.
    Light PS; Couny F; Wang YY; Wheeler NV; Roberts PJ; Benabid F
    Opt Express; 2009 Aug; 17(18):16238-43. PubMed ID: 19724623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear based gap control in 2D photonic quasicrystals of dielectric cylinders.
    Andueza Á; Sevilla J; Pérez-Conde J; Wang K
    Opt Express; 2021 Jul; 29(14):22159-22169. PubMed ID: 34265987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of air and dielectric modes in single nanocavity.
    Sun F; Wei J; Dong B; Ma Y; Chang Y; Tian H; Lee C
    Opt Express; 2019 May; 27(10):14085-14098. PubMed ID: 31163862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffraction and localization in low-dimensional photonic bandgaps.
    Longhi S; Janner D
    Opt Lett; 2004 Nov; 29(22):2653-5. PubMed ID: 15552675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals.
    Toader O; John S
    Science; 2001 May; 292(5519):1133-5. PubMed ID: 11349142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.