These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 19756116)

  • 21. Micropatterning of porous silicon films by direct laser writing.
    Khung YL; Graney SD; Voelcker NH
    Biotechnol Prog; 2006; 22(5):1388-93. PubMed ID: 17022678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection.
    Hsiung SK; Lee CH; Lee GB
    Electrophoresis; 2008 May; 29(9):1866-73. PubMed ID: 18393334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film.
    Kao TS; Fu YH; Hsu HW; Tsai DP
    J Microsc; 2008 Mar; 229(Pt 3):561-6. PubMed ID: 18331511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Azobenzene-containing polyamic acid with excellent Langmuir-Blodgett-Kuhn film formation behavior suitable for all-optical switching.
    Zong Y; Tawa K; Menges B; Rühe J; Knoll W
    Langmuir; 2005 Jul; 21(15):7036-43. PubMed ID: 16008420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical CO gas sensor using a cobalt oxide thin film prepared by pulsed laser deposition under various argon pressures.
    Nam HJ; Sasaki T; Koshizaki N
    J Phys Chem B; 2006 Nov; 110(46):23081-4. PubMed ID: 17107147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoinduced dissociation of electrospray-generated ions in an ion trap/time-of-flight mass spectrometer using a pulsed CO2 laser.
    Gabryelski W; Li L
    Rapid Commun Mass Spectrom; 2002; 16(19):1805-11. PubMed ID: 12271444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-field magneto-optical analysis in reflection mode SNOM.
    Takahashi S; Dickson W; Pollard R; Zayats A
    Ultramicroscopy; 2004 Aug; 100(3-4):443-7. PubMed ID: 15231337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution imaging spectrometer for recording absolutely calibrated far ultraviolet spectra from laser-produced plasmas.
    Brown CM; Seely JF; Feldman U; Holland GE; Weaver JL; Obenschain SP; Kjornrattanawanich B; Fielding D
    Rev Sci Instrum; 2008 Oct; 79(10):103109. PubMed ID: 19044704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution submicron patterning of self-assembled monolayers using a molecular fluorine laser at 157 nm.
    Nae FA; Saito N; Hozumi A; Takai O
    Langmuir; 2005 Feb; 21(4):1398-402. PubMed ID: 15697286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pure optical nano-writing on light- switchable spiropyrans/merocyanine thin film.
    Triolo C; Patanè S; Mazzeo M; Gambino S; Gigli G; Allegrini M
    Opt Express; 2014 Jan; 22(1):283-8. PubMed ID: 24514989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct laser patterning of soft matter: photothermal processing of supported phospholipid multilayers with nanoscale precision.
    Mathieu M; Schunk D; Franzka S; Mayer C; Hasselbrink E; Hartmann N
    Small; 2009 Sep; 5(18):2099-104. PubMed ID: 19507151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of bragg gratings with large angular multiplicity by means of the photoinduced reorientation of azobenzene copolymers.
    Saishoji A; Sato D; Shishido A; Ikeda T
    Langmuir; 2007 Jan; 23(1):320-6. PubMed ID: 17190521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical modeling of nanocrystalline TiO2 films.
    Usami A; Ozaki H
    J Phys Chem B; 2005 Feb; 109(7):2591-6. PubMed ID: 16851262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-step fabrication of micro/nanotunnels in metal interlayers.
    Zhang J; Guo C; Zhang H; Liu Q
    Nanoscale; 2013 Sep; 5(18):8351-4. PubMed ID: 23749094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical analysis of the sub-wavelength fabrication of MTMO grayscale photomasks by direct laser writing.
    Xia F; Zhang X; Wang M; Yi S; Liu Q; Xu J
    Opt Express; 2014 Jul; 22(14):16889-96. PubMed ID: 25090505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-Sio(2) cermet films for optical recording.
    Shibukawa A
    Appl Opt; 1981 Nov; 20(22):3884-8. PubMed ID: 20372287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering fluidic delays in paper-based devices using laser direct-writing.
    He PJ; Katis IN; Eason RW; Sones CL
    Lab Chip; 2015 Oct; 15(20):4054-61. PubMed ID: 26329148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble.
    Zheng Y; Liu H; Wang Y; Zhu C; Wang S; Cao J; Zhu S
    Lab Chip; 2011 Nov; 11(22):3816-20. PubMed ID: 21956638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrohydrodynamic direct-writing.
    Huang Y; Bu N; Duan Y; Pan Y; Liu H; Yin Z; Xiong Y
    Nanoscale; 2013 Dec; 5(24):12007-17. PubMed ID: 24057297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the laser oxidation kinetics process of In-In(2)O(3) MTMO photomasks by laser direct writing.
    Xia F; Zhang X; Wang M; Liu Q; Xu J
    Opt Express; 2015 Nov; 23(22):29193-201. PubMed ID: 26561189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.