BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 19756242)

  • 21. The detrimental impact of extracellular bacterial proteases on wound healing.
    Lindsay S; Oates A; Bourdillon K
    Int Wound J; 2017 Dec; 14(6):1237-1247. PubMed ID: 28745010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions.
    Hammers D; Carothers K; Lee S
    Curr Drug Targets; 2022; 23(3):222-239. PubMed ID: 34370632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial proteases and virulence.
    Frees D; Brøndsted L; Ingmer H
    Subcell Biochem; 2013; 66():161-92. PubMed ID: 23479441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [What makes bacteria pathogenic?].
    Vorland LH
    Tidsskr Nor Laegeforen; 2001 Oct; 121(26):3083-9. PubMed ID: 11757445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases.
    Kilian M; Mestecky J; Russell MW
    Microbiol Rev; 1988 Jun; 52(2):296-303. PubMed ID: 3045518
    [No Abstract]   [Full Text] [Related]  

  • 26. Cutting the line: manipulation of plant immunity by bacterial type III effector proteases.
    Mooney BC; Mantz M; Graciet E; Huesgen PF
    J Exp Bot; 2021 Apr; 72(9):3395-3409. PubMed ID: 33640987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subolesin expression in response to pathogen infection in ticks.
    Zivkovic Z; Torina A; Mitra R; Alongi A; Scimeca S; Kocan KM; Galindo RC; Almazán C; Blouin EF; Villar M; Nijhof AM; Mani R; La Barbera G; Caracappa S; Jongejan F; de la Fuente J
    BMC Immunol; 2010 Feb; 11():7. PubMed ID: 20170494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autophagy subversion by bacteria.
    Campoy E; Colombo MI
    Curr Top Microbiol Immunol; 2009; 335():227-50. PubMed ID: 19802568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytosol as battleground: ubiquitin as a weapon for both host and pathogen.
    Collins CA; Brown EJ
    Trends Cell Biol; 2010 Apr; 20(4):205-13. PubMed ID: 20129784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection.
    Denzer L; Schroten H; Schwerk C
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32466312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular battle between host and bacterium: recognition in innate immunity.
    Bardoel BW; Strijp JA
    J Mol Recognit; 2011; 24(6):1077-86. PubMed ID: 22038814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The complex interactions of bacterial pathogens and host defenses.
    Monack DM; Hultgren SJ
    Curr Opin Microbiol; 2013 Feb; 16(1):1-3. PubMed ID: 23518336
    [No Abstract]   [Full Text] [Related]  

  • 33. Copper at the front line of the host-pathogen battle.
    Festa RA; Thiele DJ
    PLoS Pathog; 2012 Sep; 8(9):e1002887. PubMed ID: 23028306
    [No Abstract]   [Full Text] [Related]  

  • 34. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria.
    Figaj D; Ambroziak P; Przepiora T; Skorko-Glonek J
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30720762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence.
    Kilian M; Reinholdt J; Lomholt H; Poulsen K; Frandsen EV
    APMIS; 1996 May; 104(5):321-38. PubMed ID: 8703438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial toxins: an overview on bacterial proteases and their action as virulence factors.
    Lebrun I; Marques-Porto R; Pereira AS; Pereira A; Perpetuo EA
    Mini Rev Med Chem; 2009 Jun; 9(7):820-8. PubMed ID: 19519507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: global and selective inhibition.
    Hodgson A; Wan F
    Mol Microbiol; 2016 Feb; 99(3):439-52. PubMed ID: 26449378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification of the host ubiquitome by bacterial enzymes.
    Berglund J; Gjondrekaj R; Verney E; Maupin-Furlow JA; Edelmann MJ
    Microbiol Res; 2020 May; 235():126429. PubMed ID: 32109687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity.
    Wang L; Cherayil BJ
    J Innate Immun; 2009; 1(5):455-64. PubMed ID: 20375603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial adaptation to host innate immunity responses.
    Rhen M; Eriksson S; Pettersson S
    Curr Opin Microbiol; 2000 Feb; 3(1):60-4. PubMed ID: 10679422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.