BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 19756266)

  • 1. Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview.
    Lindquist BA; Furse KE; Corcelli SA
    Phys Chem Chem Phys; 2009 Oct; 11(37):8119-32. PubMed ID: 19756266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for coupling between nitrile groups using DNA templates: a promising new method for monitoring structures with infrared spectroscopy.
    Krummel AT; Zanni MT
    J Phys Chem B; 2008 Feb; 112(5):1336-8. PubMed ID: 18197662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrile groups as vibrational probes: calculations of the CN infrared absorption line shape of acetonitrile in water and tetrahydrofuran.
    Lindquist BA; Corcelli SA
    J Phys Chem B; 2008 May; 112(20):6301-3. PubMed ID: 18438998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational Stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins.
    Suydam IT; Boxer SG
    Biochemistry; 2003 Oct; 42(41):12050-5. PubMed ID: 14556636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized quantum mechanics/molecular mechanics strategies for nitrile vibrational probes: acetonitrile and para-tolunitrile in water and tetrahydrofuran.
    Lindquist BA; Haws RT; Corcelli SA
    J Phys Chem B; 2008 Nov; 112(44):13991-4001. PubMed ID: 18855431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analog in water: quantum mechanical/molecular mechanical molecular dynamics simulations.
    Yang S; Cho M
    J Chem Phys; 2009 Oct; 131(13):135102. PubMed ID: 19814574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated and dispersed photon echo studies of nitrile stretching vibration of 4-cyanophenol in methanol.
    Ha JH; Lee KK; Park KH; Choi JH; Jeon SJ; Cho M
    J Chem Phys; 2009 May; 130(20):204509. PubMed ID: 19485459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vibrational probe for local nucleic acid environments: 5-cyano-2'-deoxyuridine.
    Watson MD; Gai XS; Gillies AT; Brewer SH; Fenlon EE
    J Phys Chem B; 2008 Oct; 112(42):13188-92. PubMed ID: 18816094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational dynamics of DNA. III. Molecular dynamics simulations of DNA in water and theoretical calculations of the two-dimensional vibrational spectra.
    Lee C; Park KH; Kim JA; Hahn S; Cho M
    J Chem Phys; 2006 Sep; 125(11):114510. PubMed ID: 16999493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.
    Maj M; Ahn C; Kossowska D; Park K; Kwak K; Han H; Cho M
    Phys Chem Chem Phys; 2015 May; 17(17):11770-8. PubMed ID: 25869854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric fields at the active site of an enzyme: direct comparison of experiment with theory.
    Suydam IT; Snow CD; Pande VS; Boxer SG
    Science; 2006 Jul; 313(5784):200-4. PubMed ID: 16840693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting DNA vibrational circular dichroism spectra using a coupling model from two-dimensional infrared spectroscopy.
    Krummel AT; Zanni MT
    J Phys Chem B; 2006 Dec; 110(48):24720-7. PubMed ID: 17134235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational spectroscopy of ubiquitin: comparison between theory and experiments.
    Choi JH; Lee H; Lee KK; Hahn S; Cho M
    J Chem Phys; 2007 Jan; 126(4):045102. PubMed ID: 17286512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational solvatochromism and electrochromism of cyanide, thiocyanate, and azide anions in water.
    Lee H; Choi JH; Cho M
    Phys Chem Chem Phys; 2010 Oct; 12(39):12658-69. PubMed ID: 20830379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies.
    Choi JH; Oh KI; Cho M
    J Chem Phys; 2008 Nov; 129(17):174512. PubMed ID: 19045363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrile Probes of Electric Field Agree with Independently Measured Fields in Green Fluorescent Protein Even in the Presence of Hydrogen Bonding.
    Slocum JD; Webb LJ
    J Am Chem Soc; 2016 May; 138(20):6561-70. PubMed ID: 27128688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using nitrile-derivatized amino acids as infrared probes of local environment.
    Getahun Z; Huang CY; Wang T; De León B; DeGrado WF; Gai F
    J Am Chem Soc; 2003 Jan; 125(2):405-11. PubMed ID: 12517152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.
    Deb P; Haldar T; Kashid SM; Banerjee S; Chakrabarty S; Bagchi S
    J Phys Chem B; 2016 May; 120(17):4034-46. PubMed ID: 27090068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance.
    Polfer NC; Oomens J
    Mass Spectrom Rev; 2009; 28(3):468-94. PubMed ID: 19241457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.