These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19756291)

  • 1. Geometrically asymmetric electrodes for probing electrochemical reaction kinetics: a case study of hydrogen at the Pt-CsH2PO4 interface.
    Sasaki KA; Hao Y; Haile SM
    Phys Chem Chem Phys; 2009 Oct; 11(37):8349-57. PubMed ID: 19756291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly and electrochemical characterization of nanometer-scale electrode|solid electrolyte interfaces.
    Loster M; Friedrich KA; Scherson DA
    J Phys Chem B; 2006 Sep; 110(37):18081-7. PubMed ID: 16970414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale electrodes by conducting atomic force microscopy: oxygen reduction kinetics at the Ptmid R:CsHSO4 interface.
    Louie MW; Hightower A; Haile SM
    ACS Nano; 2010 May; 4(5):2811-21. PubMed ID: 20415468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical behavior of thin-film Sm-doped ceria: insights from the point-contact configuration.
    Oh TS; Haile SM
    Phys Chem Chem Phys; 2015 May; 17(20):13501-11. PubMed ID: 25932615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standard electrode potential, Tafel equation, and the solvation thermodynamics.
    Matyushov DV
    J Chem Phys; 2009 Jun; 130(23):234704. PubMed ID: 19548747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements.
    Snowden ME; Güell AG; Lai SC; McKelvey K; Ebejer N; O'Connell MA; Colburn AW; Unwin PR
    Anal Chem; 2012 Mar; 84(5):2483-91. PubMed ID: 22279955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes.
    Liu L; Zhao G; Wu M; Lei Y; Geng R
    J Hazard Mater; 2009 Aug; 168(1):179-86. PubMed ID: 19264395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells.
    Thoi VS; Usiskin RE; Haile SM
    Chem Sci; 2015 Feb; 6(2):1570-1577. PubMed ID: 29560244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of porous electrode properties on the electrochemical transfer coefficient.
    Soderberg JN; Co AC; Sirk AH; Birss VI
    J Phys Chem B; 2006 Jun; 110(21):10401-10. PubMed ID: 16722746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound assisted electrochemical oxidation of substituted toluenes.
    Lindermeir A; Horst C; Hoffmann U
    Ultrason Sonochem; 2003 Jul; 10(4-5):223-9. PubMed ID: 12818386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes.
    Sambandam S; Ramani V
    Phys Chem Chem Phys; 2010 Jun; 12(23):6140-9. PubMed ID: 20383348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative, low-dissolution counter electrode to prevent deceptive enhancement of HER overpotential.
    Hasan MM; Allam NK
    Sci Rep; 2022 Jun; 12(1):9368. PubMed ID: 35672346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity.
    Williams CG; Edwards MA; Colley AL; Macpherson JV; Unwin PR
    Anal Chem; 2009 Apr; 81(7):2486-95. PubMed ID: 19265426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New double-band-electrode channel flow differential electrochemical mass spectrometry cell: application for detecting product formation during methanol electrooxidation.
    Wang H; Rus E; Abruña HD
    Anal Chem; 2010 Jun; 82(11):4319-24. PubMed ID: 20459058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen oxidation at the Pt-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) interface.
    Sun W; Liu M; Feng S; Liu W; Park HC; Liu M
    Phys Chem Chem Phys; 2013 Mar; 15(11):3820-6. PubMed ID: 23396506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of bi modification of pt anode catalyst in direct formic acid fuel cells.
    Kang S; Lee J; Lee JK; Chung SY; Tak Y
    J Phys Chem B; 2006 Apr; 110(14):7270-4. PubMed ID: 16599497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes.
    Haile SM; Chisholm CR; Sasaki K; Boysen DA; Uda T
    Faraday Discuss; 2007; 134():17-39; discussion 103-18, 415-9. PubMed ID: 17326560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical activation of molecular nitrogen at the Ir/YSZ interface.
    Valov I; Luerssen B; Mutoro E; Gregoratti L; De Souza RA; Bredow T; Günther S; Barinov A; Dudin P; Martin M; Janek J
    Phys Chem Chem Phys; 2011 Feb; 13(8):3394-410. PubMed ID: 21221435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spectroscopic proton-exchange membrane fuel cell test setup allowing fluorescence x-ray absorption spectroscopy measurements during state-of-the-art cell tests.
    Petrova O; Kulp C; van den Berg MW; Klementiev KV; Otto B; Otto H; Lopez M; Bron M; Grünert W
    Rev Sci Instrum; 2011 Apr; 82(4):044101. PubMed ID: 21529023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.