BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19756552)

  • 1. Practice-related improvements in posture control differ between young and older adults exposed to continuous, variable amplitude oscillations of the support surface.
    Van Ooteghem K; Frank JS; Horak FB
    Exp Brain Res; 2009 Nov; 199(2):185-93. PubMed ID: 19756552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging does not affect generalized postural motor learning in response to variable amplitude oscillations of the support surface.
    Van Ooteghem K; Frank JS; Allard F; Horak FB
    Exp Brain Res; 2010 Aug; 204(4):505-14. PubMed ID: 20544184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory postural adaptations during continuous, variable amplitude perturbations reveal generalized rather than sequence-specific learning.
    Van Ooteghem K; Frank JS; Allard F; Buchanan JJ; Oates AR; Horak FB
    Exp Brain Res; 2008 Jun; 187(4):603-11. PubMed ID: 18327574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of postural orientation to changes in surface inclination.
    Kluzik J; Peterka RJ; Horak FB
    Exp Brain Res; 2007 Mar; 178(1):1-17. PubMed ID: 17039357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural motor learning in Parkinson's disease: The effect of practice on continuous compensatory postural regulation.
    Van Ooteghem K; Frank JS; Horak FB
    Gait Posture; 2017 Sep; 57():299-304. PubMed ID: 28688367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proprioceptive acuity predicts muscle co-contraction of the tibialis anterior and gastrocnemius medialis in older adults' dynamic postural control.
    Craig CE; Goble DJ; Doumas M
    Neuroscience; 2016 May; 322():251-61. PubMed ID: 26905952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vestibular influences on human postural control in combinations of pitch and roll planes reveal differences in spatiotemporal processing.
    Carpenter MG; Allum JH; Honegger F
    Exp Brain Res; 2001 Sep; 140(1):95-111. PubMed ID: 11500802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inefficient postural responses to unexpected slips during walking in older adults.
    Tang PF; Woollacott MH
    J Gerontol A Biol Sci Med Sci; 1998 Nov; 53(6):M471-80. PubMed ID: 9823752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes in compensatory responses to unexpected resistance of leg lift during gait initiation.
    Woollacott M; Assaiante C
    Exp Brain Res; 2002 Jun; 144(3):385-96. PubMed ID: 12021820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of whole body vibration on balance, joint position sense and cutaneous sensation.
    Pollock RD; Provan S; Martin FC; Newham DJ
    Eur J Appl Physiol; 2011 Dec; 111(12):3069-77. PubMed ID: 21455611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of inter-modality re-weighting during human postural control.
    Polastri PF; Barela JA; Kiemel T; Jeka JJ
    Exp Brain Res; 2012 Nov; 223(1):99-108. PubMed ID: 22965550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M; Bottaro A; Sozzi S; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is lower leg proprioception essential for triggering human automatic postural responses?
    Bloem BR; Allum JH; Carpenter MG; Honegger F
    Exp Brain Res; 2000 Feb; 130(3):375-91. PubMed ID: 10706436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of vision and task complexity on soleus H-reflex gain.
    Pinar S; Kitano K; Koceja DM
    J Electromyogr Kinesiol; 2010 Apr; 20(2):354-8. PubMed ID: 19356950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of voluntary arm abduction on balance recovery following multidirectional stance perturbations.
    Grin L; Frank J; Allum JH
    Exp Brain Res; 2007 Mar; 178(1):62-78. PubMed ID: 17051384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-dependent modulation of proximal and distal postural responses to slips in young and older adults.
    Tang PF; Woollacott MH
    J Gerontol A Biol Sci Med Sci; 1999 Feb; 54(2):M89-102. PubMed ID: 10051861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural responses triggered by multidirectional leg lifts and surface tilts.
    Hughey LK; Fung J
    Exp Brain Res; 2005 Aug; 165(2):152-66. PubMed ID: 15940494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man.
    Allum JH; Carpenter MG; Honegger F; Adkin AL; Bloem BR
    J Physiol; 2002 Jul; 542(Pt 2):643-63. PubMed ID: 12122159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.