These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 19756846)
1. Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Ahemad M; Khan MS Arch Environ Contam Toxicol; 2010 Feb; 58(2):361-72. PubMed ID: 19756846 [TBL] [Abstract][Full Text] [Related]
2. Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Ahemad M; Khan MS Bull Environ Contam Toxicol; 2009 Jun; 82(6):761-6. PubMed ID: 19290455 [TBL] [Abstract][Full Text] [Related]
3. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Ahemad M; Saghir Khan M Curr Microbiol; 2011 Feb; 62(2):532-8. PubMed ID: 20721665 [TBL] [Abstract][Full Text] [Related]
4. Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Ahemad M; Khan MS Acta Microbiol Immunol Hung; 2011 Sep; 58(3):169-87. PubMed ID: 21983319 [TBL] [Abstract][Full Text] [Related]
5. Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Ahemad M; Khan MS Saudi J Biol Sci; 2012 Oct; 19(4):451-9. PubMed ID: 23961206 [TBL] [Abstract][Full Text] [Related]
6. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Saif S; Khan MS Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936 [TBL] [Abstract][Full Text] [Related]
7. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Wani PA; Khan MS; Zaidi A Chemosphere; 2007 Nov; 70(1):36-45. PubMed ID: 17723236 [TBL] [Abstract][Full Text] [Related]
8. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
9. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Rizvi A; Khan MS Chemosphere; 2017 Oct; 185():942-952. PubMed ID: 28747006 [TBL] [Abstract][Full Text] [Related]
10. Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. Huang J; Liu Z; Li S; Xu B; Gong Y; Yang Y; Sun H J Gen Appl Microbiol; 2016 Nov; 62(5):258-265. PubMed ID: 27725404 [TBL] [Abstract][Full Text] [Related]
11. Soil application of dinitroaniline and arylphenoxy propionic herbicides influences the activities of phosphate-solubilizing microorganisms in soil. Das AC; Nayek H; Chakravarty A Environ Monit Assess; 2012 Dec; 184(12):7453-9. PubMed ID: 22350342 [TBL] [Abstract][Full Text] [Related]
12. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941 [TBL] [Abstract][Full Text] [Related]
13. Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. Kumawat KC; Sharma P; Sirari A; Singh I; Gill BS; Singh U; Saharan K World J Microbiol Biotechnol; 2019 Mar; 35(3):47. PubMed ID: 30834977 [TBL] [Abstract][Full Text] [Related]
14. Liquid chromatographic method for the micro-quantitative determination of clodinafop in soil, wheat and Phalaris minor. Roy S; Singh SB J Chromatogr A; 2005 Feb; 1065(2):199-206. PubMed ID: 15782965 [TBL] [Abstract][Full Text] [Related]
15. Influence of imazethapyr and quizalofop-p-ethyl application on microbial biomass and enzymatic activity in peanut grown soil. Saha A; Bhaduri D; Pipariya A; Jain NK Environ Sci Pollut Res Int; 2016 Dec; 23(23):23758-23771. PubMed ID: 27623852 [TBL] [Abstract][Full Text] [Related]
16. Degradation of clodinafop propargyl by Pseudomonas sp. strain B2. Singh B Bull Environ Contam Toxicol; 2013 Dec; 91(6):730-3. PubMed ID: 24121741 [TBL] [Abstract][Full Text] [Related]
17. Multiple resistance to ACCase and AHAS-inhibiting herbicides in shortawn foxtail (Alopecurus aequalis Sobol.) from China. Guo W; Yuan G; Liu W; Bi Y; Du L; Zhang C; Li Q; Wang J Pestic Biochem Physiol; 2015 Oct; 124():66-72. PubMed ID: 26453232 [TBL] [Abstract][Full Text] [Related]
18. Effect of soil type, soil pH, and microbial activity on persistence of clodinafop herbicide. Roy S; Singh SB Bull Environ Contam Toxicol; 2006 Aug; 77(2):260-6. PubMed ID: 16977528 [No Abstract] [Full Text] [Related]
19. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Ahmad F; Ahmad I; Khan MS Microbiol Res; 2008; 163(2):173-81. PubMed ID: 16735107 [TBL] [Abstract][Full Text] [Related]
20. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Santoro MV; Cappellari LR; Giordano W; Banchio E Plant Biol (Stuttg); 2015 Nov; 17(6):1218-26. PubMed ID: 26012535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]