BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 1975691)

  • 1. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling.
    Ignarro LJ
    Pharmacol Toxicol; 1990 Jul; 67(1):1-7. PubMed ID: 1975691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme-dependent activation of guanylate cyclase by nitric oxide: a novel signal transduction mechanism.
    Ignarro LJ
    Blood Vessels; 1991; 28(1-3):67-73. PubMed ID: 1672101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide. A novel signal transduction mechanism for transcellular communication.
    Ignarro LJ
    Hypertension; 1990 Nov; 16(5):477-83. PubMed ID: 1977698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of endothelium-derived relaxing factor in porcine kidney epithelial LLC-PK1 cells: an intra- and intercellular messenger for activation of soluble guanylate cyclase.
    Ishii K; Chang B; Kerwin JF; Wagenaar FL; Huang ZJ; Murad F
    J Pharmacol Exp Ther; 1991 Jan; 256(1):38-43. PubMed ID: 1671098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halothane and isoflurane inhibit endothelium-derived relaxing factor-dependent cyclic guanosine monophosphate accumulation in endothelial cell-vascular smooth muscle co-cultures independent of an effect on guanylyl cyclase activation.
    Johns RA; Tichotsky A; Muro M; Spaeth JP; Le Cras TD; Rengasamy A
    Anesthesiology; 1995 Oct; 83(4):823-34. PubMed ID: 7574063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haem-dependent activation of cytosolic guanylate cyclase by nitric oxide: a widespread signal transduction mechanism.
    Ignarro LJ
    Biochem Soc Trans; 1992 May; 20(2):465-9. PubMed ID: 1356858
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of cytosolic guanylyl cyclase by porphyrins and metalloporphyrins.
    Ignarro LJ
    Adv Pharmacol; 1994; 26():35-65. PubMed ID: 7913618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication.
    Murad F; Forstermann U; Nakane M; Pollock J; Tracey R; Matsumoto T; Buechler W
    Adv Second Messenger Phosphoprotein Res; 1993; 28():101-9. PubMed ID: 7691121
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation and role of guanylate cyclase-cyclic GMP in vascular relaxation.
    Murad F; Waldman S; Molina C; Bennett B; Leitman D
    Prog Clin Biol Res; 1987; 249():65-76. PubMed ID: 2890172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide inhibits neutrophil beta 2 integrin function by inhibiting membrane-associated cyclic GMP synthesis.
    Banick PD; Chen Q; Xu YA; Thom SR
    J Cell Physiol; 1997 Jul; 172(1):12-24. PubMed ID: 9207921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adrenergic stimulation of cyclic GMP formation requires NO-dependent activation of cytosolic guanylate cyclase in rat pinealocytes.
    Spessert R; Layes E; Vollrath L
    J Neurochem; 1993 Jul; 61(1):138-43. PubMed ID: 8099948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic cyclic GMP formation is regulated by similar factors that modulate activation of purified hepatic soluble guanylate cyclase.
    Wood KS; Ignarro LJ
    J Biol Chem; 1987 Apr; 262(11):5020-7. PubMed ID: 2435723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical mechanisms underlying vascular smooth muscle relaxation: the guanylate cyclase-cyclic GMP system.
    Waldman SA; Murad F
    J Cardiovasc Pharmacol; 1988; 12 Suppl 5():S115-8. PubMed ID: 2469867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and cytosolic guanylate cyclase: components of an intercellular signalling system.
    Böhme E; Schmidt HH
    Z Kardiol; 1989; 78 Suppl 6():75-9. PubMed ID: 2575829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of intercellular and intracellular communication by nitric oxide in coupling of muscarinic receptors to activation of guanylate cyclase in neuronal cells.
    Hu J; el-Fakahany EE
    J Neurochem; 1993 Aug; 61(2):578-85. PubMed ID: 8101558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of action of nitric oxide: heme-dependent activation of guanylate cyclase represents a unifying signal transduction mechanism.
    Ignarro LJ
    Jpn J Pharmacol; 1992; 58 Suppl 2():207P-212P. PubMed ID: 1354764
    [No Abstract]   [Full Text] [Related]  

  • 17. Structure and regulation of soluble guanylate cyclase.
    Derbyshire ER; Marletta MA
    Annu Rev Biochem; 2012; 81():533-59. PubMed ID: 22404633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Nitric oxide. Potentiation of NO-dependent activation of soluble guanylate cyclase--(patho)physiological and pharmacotherapeutical significance].
    Severina IS
    Biomed Khim; 2007; 53(4):385-99. PubMed ID: 18035720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanylate cyclase and the .NO/cGMP signaling pathway.
    Denninger JW; Marletta MA
    Biochim Biophys Acta; 1999 May; 1411(2-3):334-50. PubMed ID: 10320667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of excitatory neurotransmitter-nitric oxide signaling pathway by inhalational anesthetics.
    Zuo Z; Tichotsky A; Johns RA
    Neuroscience; 1999; 93(3):1167-72. PubMed ID: 10473281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.