BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19757834)

  • 1. Application of free energy calculations at an ultrahigh temperature for estimation of molecular diffusivities and permeabilities in zeolite nanopores at an ambient temperature.
    Nagumo R; Takaba H; Nakao S
    J Phys Chem B; 2009 Oct; 113(40):13313-21. PubMed ID: 19757834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of alkane mixtures in zeolites: validating the maxwell-stefan formulation using MD simulations.
    Krishna R; van Baten JM
    J Phys Chem B; 2005 Apr; 109(13):6386-96. PubMed ID: 16851711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites.
    Jee SE; Sholl DS
    J Am Chem Soc; 2009 Jun; 131(22):7896-904. PubMed ID: 19422215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maxwell-Stefan diffusivities in binary mixtures of ionic liquids with dimethyl sulfoxide (DMSO) and H2O.
    Liu X; Vlugt TJ; Bardow A
    J Phys Chem B; 2011 Jul; 115(26):8506-17. PubMed ID: 21627315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite.
    van den Berg AW; Bromley ST; Flikkema E; Wojdel J; Maschmeyer T; Jansen JC
    J Chem Phys; 2004 Jun; 120(21):10285-9. PubMed ID: 15268053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY.
    Borah BJ; Jobic H; Yashonath S
    J Chem Phys; 2010 Apr; 132(14):144507. PubMed ID: 20406001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism.
    Peters B; Zimmermann NE; Beckham GT; Tester JW; Trout BL
    J Am Chem Soc; 2008 Dec; 130(51):17342-50. PubMed ID: 19053189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure, derived from molecular dynamics.
    Rudd RE; Cabot WH; Caspersen KJ; Greenough JA; Richards DF; Streitz FH; Miller PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031202. PubMed ID: 22587084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of pore blockage in silicalite zeolite using free energy perturbation calculations.
    Gupta A; Snurr RQ
    J Phys Chem B; 2005 Feb; 109(5):1822-33. PubMed ID: 16851164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass transport of O2 and N2 in nanoporous carbon (C168 schwarzite) using a quantum mechanical force field and molecular dynamics simulations.
    Arora G; Sandler SI
    Langmuir; 2006 May; 22(10):4620-8. PubMed ID: 16649773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Stokes-Einstein relationship and the levitation effect: size-dependent diffusion maximum in dense fluids and close-packed disordered solids.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2005 Mar; 109(12):5824-35. PubMed ID: 16851635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas diffusion in zeolite beds: PFG NMR evidence for different tortuosity factors in the Knudsen and bulk regimes.
    Vasenkov S; Geir O; Kärger J
    Eur Phys J E Soft Matter; 2003 Nov; 12 Suppl 1():S35-8. PubMed ID: 15011011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular diffusivity of phenol in sub- and supercritical water: application of the split-flow Taylor dispersion technique.
    Plugatyr A; Svishchev IM
    J Phys Chem B; 2011 Mar; 115(11):2555-62. PubMed ID: 21366218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from molecular dynamics simulation.
    Babarao R; Jiang J
    Langmuir; 2008 May; 24(10):5474-84. PubMed ID: 18433152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics-based approach to study the anisotropic self-diffusion of molecules in porous materials with multiple cage types: application to H2 in losod.
    van den Berg AW; Flikkema E; Lems S; Bromley ST; Jansen JC
    J Phys Chem B; 2006 Jan; 110(1):501-6. PubMed ID: 16471561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracrystalline diffusion in mesoporous zeolites.
    Mehlhorn D; Valiullin R; Kärger J; Cho K; Ryoo R
    Chemphyschem; 2012 Apr; 13(6):1495-9. PubMed ID: 22389066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation of protein dynamics in nanopores. II. Diffusion.
    Javidpour L; Tabar MR; Sahimi M
    J Chem Phys; 2009 Feb; 130(8):085105. PubMed ID: 19256630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics.
    Liu X; Schnell SK; Simon JM; Bedeaux D; Kjelstrup S; Bardow A; Vlugt TJ
    J Phys Chem B; 2011 Nov; 115(44):12921-9. PubMed ID: 21954841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of isotherm inflection on the loading dependence of the diffusivities of n-hexane and n-heptane in MFI zeolite. Quasi-elastic neutron scattering experiments supplemented by molecular simulations.
    Jobic H; Laloué N; Laroche C; van Baten JM; Krishna R
    J Phys Chem B; 2006 Feb; 110(5):2195-201. PubMed ID: 16471804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitialcy diffusion of oxygen in tetragonal La2CoO(4+δ).
    Kushima A; Parfitt D; Chroneos A; Yildiz B; Kilner JA; Grimes RW
    Phys Chem Chem Phys; 2011 Feb; 13(6):2242-9. PubMed ID: 21132203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.