These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19757903)

  • 21. How You Use It Matters: Object Function Guides Attention During Visual Search in Scenes.
    Castelhano MS; Witherspoon RL
    Psychol Sci; 2016 May; 27(5):606-21. PubMed ID: 27022016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cultural differences in attention: Eye movement evidence from a comparative visual search task.
    Alotaibi A; Underwood G; Smith AD
    Conscious Cogn; 2017 Oct; 55():254-265. PubMed ID: 28946046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Time Course of Target Template Activation Processes during Preparation for Visual Search.
    Grubert A; Eimer M
    J Neurosci; 2018 Oct; 38(44):9527-9538. PubMed ID: 30242053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The contents of the search template for category-level search in natural scenes.
    Reeder RR; Peelen MV
    J Vis; 2013 Jun; 13(3):13. PubMed ID: 23750015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cutting through the clutter: searching for targets in evolving complex scenes.
    Neider MB; Zelinsky GJ
    J Vis; 2011 Dec; 11(14):. PubMed ID: 22159628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An inverse Yarbus process: predicting observers' task from eye movement patterns.
    Haji-Abolhassani A; Clark JJ
    Vision Res; 2014 Oct; 103():127-42. PubMed ID: 25175112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fixation and saliency during search of natural scenes: the case of visual agnosia.
    Foulsham T; Barton JJ; Kingstone A; Dewhurst R; Underwood G
    Neuropsychologia; 2009 Jul; 47(8-9):1994-2003. PubMed ID: 19428433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature-based attention and spatial selection in frontal eye fields during natural scene search.
    Ramkumar P; Lawlor PN; Glaser JI; Wood DK; Phillips AN; Segraves MA; Kording KP
    J Neurophysiol; 2016 Sep; 116(3):1328-43. PubMed ID: 27250912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Looking to score: the dissociation of goal influence on eye movement and meta-attentional allocation in a complex dynamic natural scene.
    Taya S; Windridge D; Osman M
    PLoS One; 2012; 7(6):e39060. PubMed ID: 22768058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conscious and unconscious memory differentially impact attention: Eye movements, visual search, and recognition processes.
    Ramey MM; Yonelinas AP; Henderson JM
    Cognition; 2019 Apr; 185():71-82. PubMed ID: 30665071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involuntary attentional capture by task-irrelevant objects that match the search template for category detection in natural scenes.
    Reeder RR; van Zoest W; Peelen MV
    Atten Percept Psychophys; 2015 May; 77(4):1070-80. PubMed ID: 25810159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search.
    Adeli H; Vitu F; Zelinsky GJ
    J Neurosci; 2017 Feb; 37(6):1453-1467. PubMed ID: 28039373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.
    Einhäuser W; Mundhenk TN; Baldi P; Koch C; Itti L
    J Vis; 2007 Jul; 7(10):6.1-13. PubMed ID: 17997675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting eye movement patterns from fMRI responses to natural scenes.
    O'Connell TP; Chun MM
    Nat Commun; 2018 Dec; 9(1):5159. PubMed ID: 30514836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oculomotor capture during real-world scene viewing depends on cognitive load.
    Matsukura M; Brockmole JR; Boot WR; Henderson JM
    Vision Res; 2011 Mar; 51(6):546-52. PubMed ID: 21310171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parametric modeling of visual search efficiency in real scenes.
    Zhang X; Li Q; Zou Q; Fang Z; Zhou B
    PLoS One; 2015; 10(6):e0128545. PubMed ID: 26030908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural integration of top-down spatial and feature-based information in visual search.
    Egner T; Monti JM; Trittschuh EH; Wieneke CA; Hirsch J; Mesulam MM
    J Neurosci; 2008 Jun; 28(24):6141-51. PubMed ID: 18550756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the link between attentional search and the oculomotor system: Is preattentive search restricted to the range of eye movements?
    Casteau S; Smith DT
    Atten Percept Psychophys; 2020 Feb; 82(2):518-532. PubMed ID: 31942703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the role of salience in the allocation of overt visual attention.
    Parkhurst D; Law K; Niebur E
    Vision Res; 2002 Jan; 42(1):107-23. PubMed ID: 11804636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Generative Model of Cognitive State from Task and Eye Movements.
    MacInnes WJ; Hunt AR; Clarke ADF; Dodd MD
    Cognit Comput; 2018 Oct; 10(5):703-717. PubMed ID: 30740186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.