These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19757943)

  • 1. Adaptive pooling of visual motion signals by the human visual system revealed with a novel multi-element stimulus.
    Amano K; Edwards M; Badcock DR; Nishida S
    J Vis; 2009 Mar; 9(3):4.1-25. PubMed ID: 19757943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of form cues on 1D and 2D motion pooling.
    Edwards M; Cassanello CR; Badcock DR; Nishida S
    Vision Res; 2013 Jan; 76():94-104. PubMed ID: 23131840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-frequency tuning in the pooling of one- and two-dimensional motion signals.
    Amano K; Edwards M; Badcock DR; Nishida S
    Vision Res; 2009 Nov; 49(23):2862-9. PubMed ID: 19732787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human neural responses involved in spatial pooling of locally ambiguous motion signals.
    Amano K; Takeda T; Haji T; Terao M; Maruya K; Matsumoto K; Murakami I; Nishida S
    J Neurophysiol; 2012 Jun; 107(12):3493-508. PubMed ID: 22442570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional spatial-frequency selective pooling of one-dimensional motion signals into global two-dimensional motion.
    Maruya K; Amano K; Nishida S
    Vision Res; 2010 Jun; 50(11):1054-64. PubMed ID: 20353800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial pooling of one-dimensional second-order motion signals.
    Maruya K; Nishida S
    J Vis; 2010 Nov; 10(13):24. PubMed ID: 21149309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pooling and segmenting motion signals.
    Burr DC; Baldassi S; Morrone MC; Verghese P
    Vision Res; 2009 Jun; 49(10):1065-72. PubMed ID: 19027034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex interactions between spatial, orientation, and motion cues for biological motion perception across visual space.
    Thurman SM; Lu H
    J Vis; 2013 Feb; 13(2):8. PubMed ID: 23390322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of distributed 1D and 2D motion representations for short-latency ocular following.
    Barthélemy FV; Perrinet LU; Castet E; Masson GS
    Vision Res; 2008 Feb; 48(4):501-22. PubMed ID: 18221979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of visual motion detection.
    Schrater PR; Knill DC; Simoncelli EP
    Nat Neurosci; 2000 Jan; 3(1):64-8. PubMed ID: 10607396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global motion coherence can influence the representation of ambiguous local motion.
    Scarfe P; Johnston A
    J Vis; 2011 Oct; 11(12):. PubMed ID: 21997477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of global motion perception using a multiple-aperture stimulus.
    Lee AL; Lu H
    J Vis; 2010 Apr; 10(4):9.1-16. PubMed ID: 20465329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of color to global motion processing.
    Michna ML; Mullen KT
    J Vis; 2008 May; 8(5):10.1-12. PubMed ID: 18842081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion-induced position shifts occur after motion integration.
    Mather G; Pavan A
    Vision Res; 2009 Nov; 49(23):2741-6. PubMed ID: 19761786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perception of visual motion coherence by rats and mice.
    Douglas RM; Neve A; Quittenbaum JP; Alam NM; Prusky GT
    Vision Res; 2006 Sep; 46(18):2842-7. PubMed ID: 16647739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical integration of individual motions in locally paired-dot stimuli.
    Watanabe O; Kikuchi M
    Vision Res; 2006 Jan; 46(1-2):82-90. PubMed ID: 16298413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of primary visual cortex in the binocular integration of plaid motion perception.
    Saint-Amour D; Walsh V; Guillemot JP; Lassonde M; Lepore F
    Eur J Neurosci; 2005 Feb; 21(4):1107-15. PubMed ID: 15787716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eccentric perception of biological motion is unscalably poor.
    Ikeda H; Blake R; Watanabe K
    Vision Res; 2005 Jul; 45(15):1935-43. PubMed ID: 15820512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of encoding and decoding in V1 and MT accounts for motion perception anisotropies in the human visual system.
    Rokem A; Silver MA
    Brain Res; 2009 Nov; 1299():3-16. PubMed ID: 19595992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of cortical area V5/MT+ in speed-tuned directional anisotropies in global motion perception.
    Giaschi D; Zwicker A; Young SA; Bjornson B
    Vision Res; 2007 Mar; 47(7):887-98. PubMed ID: 17306855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.