These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19758473)

  • 1. Using structural bioinformatics to investigate the impact of non synonymous SNPs and disease mutations: scope and limitations.
    Reumers J; Schymkowitz J; Rousseau F
    BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S9. PubMed ID: 19758473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS.
    Merelli I; Calabria A; Cozzi P; Viti F; Mosca E; Milanesi L
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S9. PubMed ID: 23369106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge-based computational mutagenesis for predicting the disease potential of human non-synonymous single nucleotide polymorphisms.
    Masso M; Vaisman II
    J Theor Biol; 2010 Oct; 266(4):560-8. PubMed ID: 20655929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Nonsynonymous Single-Nucleotide Variations on Post-Translational Modification Sites in Human Proteins.
    Gulzar N; Dingerdissen H; Yan C; Mazumder R
    Methods Mol Biol; 2017; 1558():159-190. PubMed ID: 28150238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the impact of deleterious single point mutations in SMAD gene family using structural bioinformatics approach.
    George Priya Doss C; Nagasundaram N; Tanwar H
    Interdiscip Sci; 2012 Jun; 4(2):103-15. PubMed ID: 22843233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive in silico analysis of the functional and structural impact of SNPs in the IGF1R gene.
    de Alencar SA; Lopes JC
    J Biomed Biotechnol; 2010; 2010():715139. PubMed ID: 20625407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting functional effect of human missense mutations using PolyPhen-2.
    Adzhubei I; Jordan DM; Sunyaev SR
    Curr Protoc Hum Genet; 2013 Jan; Chapter 7():Unit7.20. PubMed ID: 23315928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path to facilitate the prediction of functional amino acid substitutions in red blood cell disorders--a computational approach.
    B R; C GP
    PLoS One; 2011; 6(9):e24607. PubMed ID: 21931771
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Yazar M; Ă–zbek P
    OMICS; 2021 Jan; 25(1):23-37. PubMed ID: 33058752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VnD: a structure-centric database of disease-related SNPs and drugs.
    Yang JO; Oh S; Ko G; Park SJ; Kim WY; Lee B; Lee S
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D939-44. PubMed ID: 21051351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current challenges in genome annotation through structural biology and bioinformatics.
    Furnham N; de Beer TA; Thornton JM
    Curr Opin Struct Biol; 2012 Oct; 22(5):594-601. PubMed ID: 22884875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties.
    Ferrer-Costa C; Orozco M; de la Cruz X
    J Mol Biol; 2002 Jan; 315(4):771-86. PubMed ID: 11812146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Status quo of annotation of human disease variants.
    Venselaar H; Camilli F; Gholizadeh S; Snelleman M; Brunner HG; Vriend G
    BMC Bioinformatics; 2013 Dec; 14():352. PubMed ID: 24305467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms.
    Cheng TM; Lu YE; Vendruscolo M; Lio' P; Blundell TL
    PLoS Comput Biol; 2008 Jul; 4(7):e1000135. PubMed ID: 18654622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Analysis of High-Risk SNPs in Human DBY Gene Responsible for Male Infertility: A Functional and Structural Impact.
    Nailwal M; Chauhan JB
    Interdiscip Sci; 2019 Sep; 11(3):412-427. PubMed ID: 29520635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing predictors of changes in protein stability upon mutation using self-consistency.
    Thiltgen G; Goldstein RA
    PLoS One; 2012; 7(10):e46084. PubMed ID: 23144695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases.
    Reumers J; Conde L; Medina I; Maurer-Stroh S; Van Durme J; Dopazo J; Rousseau F; Schymkowitz J
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D825-9. PubMed ID: 18086700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNAP: predict effect of non-synonymous polymorphisms on function.
    Bromberg Y; Rost B
    Nucleic Acids Res; 2007; 35(11):3823-35. PubMed ID: 17526529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.