These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19758547)

  • 1. Implementation of a Hebbian chemoreceptor model for diffusive source localization.
    Rosen G; Hasler P; Smith MT
    Biosystems; 2009 Jun; 96(3):223-36. PubMed ID: 19758547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell.
    Tindall MJ; Porter SL; Maini PK; Gaglia G; Armitage JP
    Bull Math Biol; 2008 Aug; 70(6):1525-69. PubMed ID: 18642048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemosensor-driven artificial antennal lobe transient dynamics enable fast recognition and working memory.
    Muezzinoglu MK; Huerta R; Abarbanel HD; Ryan MA; Rabinovich MI
    Neural Comput; 2009 Apr; 21(4):1018-37. PubMed ID: 19018701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hebbian errors in learning: an analysis using the Oja model.
    Rădulescu A; Cox K; Adams P
    J Theor Biol; 2009 Jun; 258(4):489-501. PubMed ID: 19248792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor occupancy on an ellipsoidal cell in the presence of a point source of a chemoattractant.
    Weber I
    J Chem Inf Model; 2005; 45(6):1647-51. PubMed ID: 16309268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic control of spontaneous signal generation for gradient sensing in chemotaxis.
    Naoki H; Sakumura Y; Ishii S
    J Theor Biol; 2008 Nov; 255(2):259-66. PubMed ID: 18789338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive improved natural gradient algorithm for blind source separation.
    Liu JQ; Feng DZ; Zhang WW
    Neural Comput; 2009 Mar; 21(3):872-89. PubMed ID: 18928362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemotaxis and random motility in unsteady chemoattractant fields: a computational study.
    Jabbarzadeh E; Abrams CF
    J Theor Biol; 2005 Jul; 235(2):221-32. PubMed ID: 15862591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations of odorant detection by biologically inspired sensor arrays.
    Schuech R; Stacey MT; Barad MF; Koehl MA
    Bioinspir Biomim; 2012 Mar; 7(1):016001. PubMed ID: 22155966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayes-optimal chemotaxis.
    Mortimer D; Dayan P; Burrage K; Goodhill GJ
    Neural Comput; 2011 Feb; 23(2):336-73. PubMed ID: 21105826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system.
    Diamond A; Schmuker M; Berna AZ; Trowell S; Nowotny T
    Bioinspir Biomim; 2016 Feb; 11(2):026002. PubMed ID: 26891474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Infotaxis' as a strategy for searching without gradients.
    Vergassola M; Villermaux E; Shraiman BI
    Nature; 2007 Jan; 445(7126):406-9. PubMed ID: 17251974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemotactic behavior of computer-based surrogate bacteria.
    Bray D; Levin MD; Lipkow K
    Curr Biol; 2007 Jan; 17(1):12-9. PubMed ID: 17208180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chemical-in-μwell: a high-throughput technique for identifying solutes eliciting a chemotactic response in motile bacteria.
    Armitano J; Baraquet C; Michotey V; Méjean V; Jourlin-Castelli C
    Res Microbiol; 2011 Nov; 162(9):934-8. PubMed ID: 21392571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of SPAM messages using an approach inspired on the immune system.
    Guzella TS; Mota-Santos TA; Uchôa JQ; Caminhas WM
    Biosystems; 2008 Jun; 92(3):215-25. PubMed ID: 18395967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Extremotaxis': computing with a bacterial-inspired algorithm.
    Nicolau DV; Burrage K; Nicolau DV; Maini PK
    Biosystems; 2008; 94(1-2):47-54. PubMed ID: 18611427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of chemotaxis and random motility in 2D random porous domains.
    Jabbarzadeh E; Abrams CF
    Bull Math Biol; 2007 Feb; 69(2):747-64. PubMed ID: 17216402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the cell's guidance system.
    Iglesias PA; Levchenko A
    Sci STKE; 2002 Sep; 2002(148):re12. PubMed ID: 12209053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems.
    Chiu C; Yu JL
    Math Biosci Eng; 2007 Apr; 4(2):187-203. PubMed ID: 17658923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microfluidic palette: a diffusive gradient generator with spatio-temporal control.
    Atencia J; Morrow J; Locascio LE
    Lab Chip; 2009 Sep; 9(18):2707-14. PubMed ID: 19704987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.